Major Mechanism (major + mechanism)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Mechanism of malsegregations at meiosis: premature centromere separation and precocious division in female Chinese hamsters stimulated with gonadotropic hormones

CONGENITAL ANOMALIES, Issue 3 2000
Shin-ichi Sonta
ABSTRACT, Using female Chinese hamsters stimulated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG), we investigated the influence of hormonal stimulation upon meiotic segregation in oocytes. In 1,576 oocytes ovulated spontaneously from 197 non-treated mature females, the number (percentage) of hyperhaploid oocytes with more than 12 (12,14) chromosomes was 16 (1.0%). These cells had no extra single chromatids, but all had extra chromosomes. Single chromatids were seen in 7 (0.4%) cells with a haploid chromosome set. On the other hand, a total of 1,329 and 1,198 second meiotic (MII) oocytes from 64 mature females and 61 immature females stimulated with PMSG and hCG, respectively, were subjected to chromosomal analysis. Single chromatids were seen in 34 (2.6%) and 62 (5.2%) of these oocytes, respectively. Since these chromatids were mostly paired and the sister chromatids existed near each other in many cells, they may have separated from some chromosomes of haploid cells. Compared with the non-treated females, the frequency of cells with single chromatids was significantly greater in oocytes from both mature and immature females stimulated with PMSG and hCG. The number (percentage) of hyperhaploid cells from mature and immature PMSG-hCG-stimulated females, respectively, was 15 (1.1%) and 14 (1.2%), which was not significantly greater than that in non-treated females. Most of these cells had extra whole chromosomes but one oocyte from mature females and one from immature females had an extra single chromatid. These findings indicate that such hormonal stimulation induces premature centromere separation in MII oocytes and precocious division at anaphase I, which can be assumed by the presence of MII cells with extra single chromatids. Considering that no or less hyperhaploid MII oocytes with an extra single chromatid were seen in oocytes from spontaneous ovulation and from artificial ovulation on hormonal stimulation, these findings suggest that the major mechanism of malsegregations at first meiotic (MI) division is not a precocious division but rather, errors such as nondisjunction of homologous chromosomes (dyads). [source]


Insulin resistance in type 2 diabetes: role of fatty acids,

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue S2 2002
Peter Arner
Abstract Insulin resistance is one of the key factors responsible for hyperglycaemia in type 2 diabetes and can result in a number of metabolic abnormalities associated with cardiovascular disease (insulin resistance syndrome), even in the absence of overt diabetes. The mechanisms involved in the development of insulin resistance are multifactorial and are only partly understood, but increased availability of free fatty acids (FFAs) is of particular importance for the liver and skeletal muscle. The role of FFAs in type 2 diabetes is most evident in obese patients who have several abnormalities in FFA metabolism. Because of a mass effect, the release of FFAs from the total adipose tissue depot to the blood stream is increased and the high concentration of circulating FFAs impairs muscle uptake of glucose by competitive inhibition. In upper-body obesity, which predisposes individuals to type 2 diabetes, the rate of lipolysis is accelerated in visceral adipose tissue. This results in a selective increase in FFA mobilisation to the portal vein, which connects visceral fat to the liver. A high ,portal' FFA concentration has undesirable effects on the liver, resulting in dyslipidaemia, hyperinsulinaemia, hyperglycaemia and hepatic insulin resistance. Recently, a new class of antidiabetic agents, the thiazolidinediones (TZDs) or ,glitazones' has been developed. A prominent effect of these agents is the lowering of circulating FFA levels and it is believed, but not yet proven, that this interaction with FFAs constitutes a major mechanism behind the glucose-lowering effect of the TZDs. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Anticlastogenic, antitoxic and sorption effects of humic substances on the mutagen maleic hydrazide tested in leguminous plants

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2004
G. Ferrara
Summary The potential anticlastogenic and antitoxic effects of a soil humic acid (HA), a peat HA and a peat fulvic acid (FA) on the mutagen maleic hydrazide (MH) have been investigated in two legume species, Vicia faba and Pisum sativum. Both HAs and FA were tested at two different concentrations, 20 and 200 mg l,1, either alone or after 24-hour interaction with 10 mg l,1 of MH before addition to the legume seeds. Anticlastogenicity, i.e. an antimutagenic action defined as the capacity for minimizing chromosome breakages, was evaluated by counting both micronuclei (MN) and aberrant anatelophases (AAT) in root-tip cells. Length and dry weight of the seedling primary root were measured to test the antitoxic activity of HA and FA on MH. The possible occurrence and extent of adsorption or desorption of MH onto or from HA were also investigated. The two species responded differently to the anticlastogenic tests, with V. faba showing a greater number of MN and AAT anomalies than P. sativum. Peat HA and FA exhibited anticlastogenic and antitoxic activities of similar intensity and greater than those of soil HA. The adsorption capacity of both HAs for MH was small, thus suggesting that adsorption is not a major mechanism responsible for the reduction of clastogenicity and antitoxicity of MH by HA. [source]


EGF receptor in relation to tumor development: molecular basis of responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors

FEBS JOURNAL, Issue 2 2010
Kenji Takeuchi
The function of the epidermal growth factor receptor (EGFR) is dysregulated in various types of malignancy as a result of gene amplification, mutations, or abnormally increased ligand production. Therefore, the tyrosine kinase activity of the EGFR is a promising therapeutic target. EGFR tyrosine kinase inhibitors, such as gefitinib (Iressa), show evident anticancer effects in patients with non-small cell lung cancer. The induction of apoptosis has been considered to be the major mechanism for these gefitinib-mediated anticancer effects. Lung cancer cells harboring mutant EGFRs become dependent on them for their survival and, consequently, undergo apoptosis following the inhibition of EGFR tyrosine kinase by gefitinib. Gefitinib has been shown to inhibit cell survival and growth signaling pathways such as the extracellular signal-regulated kinase 1/2 pathway and the Akt pathway, as a consequence of the inactivation of EGFR. However, the precise downstream signaling molecules of extracellular signal-regulated kinase 1/2 and Akt have not yet been elucidated. In this minireview we have highlighted the effect of tyrosine kinase inhibitors on members of the Bcl-2 family of proteins, which are downstream signaling molecules and serve as the determinants that control apoptosis. We also discuss tyrosine kinase inhibitor-induced apoptosis via c-Jun NH2 -terminal kinase and p38 mitogen-activated protein kinase. [source]


Microbial biodegradation of polyaromatic hydrocarbons

FEMS MICROBIOLOGY REVIEWS, Issue 6 2008
Ri-He Peng
Abstract Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to particulates in soil and sediments, rendering them less available for biological uptake. Microbial degradation represents the major mechanism responsible for the ecological recovery of PAH-contaminated sites. The goal of this review is to provide an outline of the current knowledge of microbial PAH catabolism. In the past decade, the genetic regulation of the pathway involved in naphthalene degradation by different gram-negative and gram-positive bacteria was studied in great detail. Based on both genomic and proteomic data, a deeper understanding of some high-molecular-weight PAH degradation pathways in bacteria was provided. The ability of nonligninolytic and ligninolytic fungi to transform or metabolize PAH pollutants has received considerable attention, and the biochemical principles underlying the degradation of PAHs were examined. In addition, this review summarizes the information known about the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted ecosystems. A deeper understanding of the microorganism-mediated mechanisms of catalysis of PAHs will facilitate the development of new methods to enhance the bioremediation of PAH-contaminated sites. [source]


Rearrangement of upstream sequences of the hTERT gene during cellular immortalization

GENES, CHROMOSOMES AND CANCER, Issue 11 2009
Yuanjun Zhao
Telomerase expression, resulting from transcriptional activation of the hTERT gene, allows cells to acquire indefinite proliferative potential during cellular immortalization and tumorigenesis. However, mechanisms of hTERT gene activation in many immortal cell lines and cancer cells are poorly understood. Here, we report our studies on hTERT activation using genetically related pairs of telomerase-negative (Tel,) and -positive (Tel+) fibroblast lines. First, whereas transiently transfected plasmid reporters did not recapitulate the endogenous hTERT promoter, the promoter in chromosomally integrated bacterial artificial chromosome (BAC) reporters was activated in a subset of Tel+ cells, indicating that activation of the hTERT promoter required native chromatin context and/or distal regulatory elements. Second, the hTERT gene, located near the telomere of chromosome 5p, was translocated in all three Tel+ cell lines but not in their parental precrisis cells and Tel, immortal siblings. The breakage points were mapped to regions upstream of the hTERT promoter, indicating that the hTERT gene was the target of these chromosomal rearrangements. In two Tel+ cell lines, translocation of the endogenous hTERT gene appeared to be the major mechanism of its activation as the activity of hTERT promoter in many chromosomally integrated BAC reporters, with intact upstream and downstream neighboring loci, remained relatively low. Therefore, our results suggest that rearrangement of upstream sequences is an important new mechanism of hTERT promoter activation during cellular immortalization. The chromosomal rearrangements likely occurred during cellular crisis and facilitated by telomere dysfunction. Such translocations allowed the hTERT promoter to escape from the native condensed chromatin environment. © 2009 Wiley-Liss, Inc. [source]


Physically-based modelling of double-peak discharge responses at Slapton Wood catchment

HYDROLOGICAL PROCESSES, Issue 10 2008
Stephen J Birkinshaw
Abstract Heavy winter rainfall produces double-peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation-excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically-based spatially-distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three-stage (multi-scale) approach to calibration is used: (1) water balance validation for vertical one-dimensional flow at arable, grassland and woodland plots; (2) two-dimensional flow for cross-sections cutting across the stream valley; and (3) three-dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ,wets up' and shallow subsurface flows are produced, with water deflected laterally along the soil-bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Analysis of Cryptosporidium parvum oocyst transport in porous media

HYDROLOGICAL PROCESSES, Issue 11 2004
Song-Bae Kim
Abstract Cryptosporidium parvum is a protozoan parasite, transmitted through aqueous environments in the form of an oocyst. In this study, a transport model into which sorption, filtration and inactivation mechanisms are incorporated is applied to simulate laboratory column data, and the suitability of a kinetic model to describe the C. parvum oocyst transport and removal in porous media is compared with an equilibrium model. The kinetic model is applied to simulate previous column experimental data and successfully simulates the concentration peak; the late time tailing effect appeared in the breakthrough curves, indicating that the kinetic model is more suitable than the equilibrium one at simulating the fate and transport of the oocysts in porous media. Simulation illustrates that sorption causes retardation along with a tailing in the breakthrough curve. Additionally, filtration acts as a major mechanism of removing the oocysts from the aqueous phase, whereas the role of inactivation in reducing the viable oocyst concentration is minimal. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Priming of immune responses against transporter associated with antigen processing (TAP)-deficient tumours: tumour direct priming

IMMUNOLOGY, Issue 3 2009
Xiao-Lin Li
Summary We previously showed that introduction of transporter associated with antigen processing (TAP) 1 into TAP-negative CMT.64, a major histocompatibility complex class I (MHC-I) down-regulated mouse lung carcinoma cell line, enhanced T-cell immunity against TAP-deficient tumour cells. Here, we have addressed two questions: (1) whether such immunity can be further augmented by co-expression of TAP1 with B7.1 or H-2Kb genes, and (2) which T-cell priming mechanism (tumour direct priming or dendritic cell cross-priming) plays the major role in inducing an immune response against TAP-deficient tumours. We introduced the B7.1 or H-2Kb gene into TAP1-expressing CMT.64 cells and determined which gene co-expressed with TAP1 was able to provide greater protective immunity against TAP-deficient tumour cells. Our results show that immunization of mice with B7.1 and TAP1 co-expressing but not H-2Kb and TAP1 co-expressing CMT.64 cells dramatically augments T-cell-mediated immunity, as shown by an increase in survival of mice inoculated with live CMT.64 cells. In addition, our results suggest that induction of T-cell-mediated immunity against TAP-deficient tumour cells could be mainly through tumour direct priming rather than dendritic cell cross-priming as they show that T cells generated by tumour cell-lysate-loaded dendritic cells recognized TAP-deficient tumour cells much less than TAP-proficient tumour cells. These data suggest that direct priming by TAP1 and B7.1 co-expressing tumour cells is potentially a major mechanism to facilitate immune responses against TAP-deficient tumour cells. [source]


Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma,

INTERNATIONAL JOURNAL OF CANCER, Issue 3 2005
Joseph Kwong
Abstract Tazarotene-induced gene 1 (TIG1) and Tazarotene-induced gene 3 (TIG3) are retinoid acid (RA) target genes as well as candidate tumor suppressor genes in human cancers. In our study, we have investigated the expression of TIG1 and TIG3 in nasopharyngeal carcinoma (NPC). Loss of TIG1 expression was found in 80% of NPC cell lines and 33% of xenografts, whereas TIG3 was expressed in all NPC samples and immortalized nasopharyngeal epithelial cells. In order to elucidate the epigenetic silencing of TIG1 in NPC, the methylation status of TIG1 promoter was examined by genomic bisulfite sequencing and methylation-specific PCR (MSP). We have detected dense methylation of TIG1 5,CpG island in the 5 TIG1 -negative NPC cell lines and xenograft (C666-1, CNE1, CNE2, HONE1 and X666). Partial methylation was observed in 1 NPC cell line HK1 showing dramatic decreased in TIG1 expression. Promoter methylation was absent in 2 TIG1 -expressed NPC xenografts and the normal epithelial cells. Restoration of TIG1 expression and unmethylated alleles were observed in NPC cell lines after 5-aza-2,-deoxycytidine treatment. Moreover, the methylated TIG1 sequence was detected in 39 of 43 (90.7%) primary NPC tumors by MSP. In conclusion, our results showed that TIG1 expression is lost in the majority of NPC cell lines and xenografts, while promoter hypermethylation is the major mechanism for TIG1 silencing. Furthermore, the frequent epigenetic inactivation of TIG1 in primary NPC tumors implied that it may play an important role in NPC tumorigenesis. [source]


The role of the oceans in climate

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2003
G. R. Bigg
Abstract The ocean is increasingly seen as a vital component of the climate system. It exchanges with the atmosphere large quantities of heat, water, gases, particles and momentum. It is an important part of the global redistribution of heat from tropics to polar regions keeping our planet habitable, particularly equatorward of about 30°. In this article we review recent work examining the role of the oceans in climate, focusing on research in the Third Assessment Report of the IPCC and later. We discuss the general nature of oceanic climate variability and the large role played by stochastic variability in the interaction of the atmosphere and ocean. We consider the growing evidence for biogeochemical interaction of climatic significance between ocean and atmosphere. Air,sea exchange of several radiatively important gases, in particular CO2, is a major mechanism for altering their atmospheric concentrations. Some more reactive gases, such as dimethyl sulphide, can alter cloud formation and hence albedo. Particulates containing iron and originating over land can alter ocean primary productivity and hence feedbacks to other biogeochemical exchanges. We show that not only the tropical Pacific Ocean basin can exhibit coupled ocean,atmosphere interaction, but also the tropical Atlantic and Indian Oceans. Longer lived interactions in the North Pacific and Southern Ocean (the circumpolar wave) are also reviewed. The role of the thermohaline circulation in long-term and abrupt climatic change is examined, with the freshwater budget of the ocean being a key factor for the degree, and longevity, of change. The potential for the Mediterranean outflow to contribute to abrupt change is raised. We end by examining the probability of thermohaline changes in a future of global warming. Copyright © 2003 Royal Meteorological Society [source]


Hyperglycemia and glucosamine-induced mesangial cell cycle arrest and hypertrophy: Common or independent mechanisms?

IUBMB LIFE, Issue 7 2006
Elodie Masson
Abstract The Hexosamine Pathway (HP) is one hypothesis proposed to explain glucose toxicity and the alterations observed during the course of diabetic microvascular complication development. Glucosamine is a precursor of UDP-N-Acetylglucosamine (UDP-GlcNAc), the main product of the HP that has often been used to mimic its activation. The transfer of a UDP-GlcNAc residue onto proteins (O-GlcNAc modification) represents the final step of the HP and is considered as a major mechanism by which this pathway exerts its signalling effects. While it is well accepted that the HP promotes extracellular matrix accumulation in the context of diabetic nephropathy, its involvement in the perturbations of cell cycle progression and hypertrophy of renal cells has been poorly investigated. Nevertheless, in a growing number of studies, the HP and O-GlcNAc modification are emerging as important regulators of cell cycle progression. This review will focus on the role of glucosamine and O-GlcNAc modification in cell cycle regulation in the context of diabetic nephropathy. Special emphasis will be given into the role of the HP as a potential mediator of the effects of high glucose on the perturbations of renal cell growth. iubmb Life, 58: 381-388, 2006 [source]


Experimental study of the safety of the selective COX-2 inhibitor, celecoxib, for gastric mucosa

JOURNAL OF DIGESTIVE DISEASES, Issue 2 2003
Jun Ting LI
OBJECTIVE: To compare the gastric mucosal damage induced by a COX-2 inhibitor, celecoxib, and a conventional NSAID, indomethacin. METHODS: A rat model of NSAID-induced gastric mucosal damage was prepared for indomethacin and celecoxib separately (n = 8). After gastric damage was induced by 100% ethanol, celecoxib was administered by gastric gavage (n = 8). Gastric mucosal concentrations of 6-keto-PGF1, and TXB2 and the lesion index (LI) were measured. Morphological changes of the gastric mucosa were assessed under light and scanning electron microscopy. RESULTS: Indomethacin caused marked gastric damage (LI: 13.38 ± 2.06) and significant reduction of the concentrations of 6-keto-PGF1, and TXB2 (P < 0.01), Celecoxib did not produce necrotic injuries on healthy gastric mucosa (LI: 0), but the mucosal injuries previously induced by ethanol worsened after its administration (LI: 37.19 ± 3.34 vs 19.90 ± 2.28, P < 0.01). CONCLUSIONS: Inhibition of COX-1 is the major mechanism of NSAIDs in producing gastric mucosal damage. As a selective COX-2 inhibitor, celecoxib does not produce toxic injuries of the healthy gastric mucosa, and is thus safer than conventional NSAID. However, when administered in the presence of an altered gastric mucosa, gastric injuries were worsened. [source]


Plasma serotonin levels and the platelet serotonin transporter

JOURNAL OF NEUROCHEMISTRY, Issue 1 2007
B. Brenner
Abstract Serotonin (5HT) is a platelet-stored vasoconstrictor. Altered concentrations of circulating 5HT are implicated in several pathologic conditions, including hypertension. The actions of 5HT are mediated by different types of receptors and terminated by a single 5HT transporter (SERT). Therefore, SERT is a major mechanism that regulates plasma 5HT levels to prevent vasoconstriction and thereby secure a stable blood flow. In this study, the response of platelet SERT to the plasma 5HT levels was examined within two models: (i) in subjects with chronic hypertension or normotension; (ii) on platelets isolated from normotensive subjects and pretreated with 5HT at various concentrations. The platelet 5HT uptake rates were lower during hypertension due to a decrease in Vmax with a similar Km; also, the decrease in Vmax was primarily due to a decrease in the density of SERT on the platelet membrane, with no change in whole cell expression. Additionally, while the platelet 5HT content decreased 33%, the plasma 5HT content increased 33%. Furthermore, exogenous 5HT altered the 5HT uptake rates by changing the density of SERT molecules on the plasma membrane in a biphasic manner. Therefore, we hypothesize that in a hypertensive state, the elevated plasma 5HT levels induces a loss in 5HT uptake function in platelets via a decrease in the density of SERT molecules on the plasma membrane. Through the feedback effect of this proposed mechanism, plasma 5HT controls its own concentration levels by modulating the uptake properties of platelet SERT. [source]


Novel alternatively spliced endoplasmic reticulum retention signal in the cytoplasmic loop of Proteolipid Protein-1

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2007
Cherie Southwood
Abstract Increased awareness about the importance of protein folding and trafficking to the etiology of gain-of-function diseases has driven extensive efforts to understand the cell and molecular biology underlying the life cycle of normal secretory pathway proteins and the detrimental effects of abnormal proteins. In this regard, the quality-control machinery in the endoplasmic reticulum (ER) has emerged as a major mechanism by which cells ensure that secreted and transmembrane proteins either adopt stable secondary, tertiary, and quaternary structures or are retained in the ER and degraded. Here we examine cellular and molecular aspects of ER retention in transfected fibroblasts expressing missense mutations in the Proteolipid Protein-1 (PLP1) gene that cause mild or severe forms of neurodegenerative disease in humans. Mild mutations cause protein retention in the ER that is partially dependent on the presence of a cytoplasmically exposed heptapeptide, KGRGSRG. In contrast, retention associated with severe mutations occurs independently of this peptide. Accordingly, the function of this novel heptapeptide has a significant impact on pathogenesis and provides new insight into the functions of the two splice isoforms encoded by the PLP1 gene, PLP1 and DM-20. © 2006 Wiley-Liss, Inc. [source]


Effect of lesogaberan, a novel GABAB -receptor agonist, on transient lower oesophageal sphincter relaxations in male subjects

ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 11 2010
G. E. BOECKXSTAENS
Aliment Pharmacol Ther,31, 1208,1217 Summary Background, Transient lower oesophageal sphincter relaxations (TLESRs) are a major mechanism behind gastro-oesophageal reflux disease (GERD). Aim, To assess the effect of lesogaberan (AZD3355) , a novel peripherally active GABAB receptor agonist , on TLESRs. Methods, Twenty-four healthy men were enrolled in this single-blind, placebo-controlled, randomized, single-centre, three-period crossover phase 1 study. Subjects were randomized to receive single oral doses of lesogaberan (0.8 mg/kg), baclofen (40 mg) and placebo, separated by washout periods of ,7 days. Subjects finished a meal 1 h after the dose. Oesophageal manometry and pH-metry measurements were taken during the 3 h after the meal. Results, Twenty-one subjects completed the study. Compared with placebo, lesogaberan 0.8 mg/kg significantly reduced the number of TLESRs by 36% [geometric mean ratio (GMR): 0.64; 95% confidence interval (CI): 0.51,0.82] and significantly reduced the number of acid reflux episodes (mean reduction: 1.6; 95% CI: 0.34,2.9). Lesogaberan also significantly increased lower oesophageal sphincter (LES) pressure by 39% compared with placebo (GMR: 1.39; 95% CI: 1.18,1.64). Comparable results were observed with baclofen. Similar numbers of adverse events were reported by subjects taking lesogaberan and placebo. Conclusion, Compared with placebo, lesogaberan significantly reduced TLESRs and acid reflux episodes and increased LES pressure. [source]


Reduced rates of axonal and dendritic growth in embryonic hippocampal neurones cultured from a mouse model of Sandhoff disease

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2003
D. Pelled
Sandhoff disease is a lysosomal storage disease in which ganglioside GM2 accumulates because of a defective ,-subunit of ,-hexosaminidase. This disease is characterized by neurological manifestations, although the pathogenic mechanisms leading from GM2 accumulation to neuropathology are largely unknown. We now examine the viability, development and rates of neurite growth of embryonic hippocampal neurones cultured from a mouse model of Sandhoff disease, the Hexb,/, mouse. GM2 was detected by metabolic labelling at low levels in wild type (Hexb+/+) neurones, and increased by approximately three-fold in Hexb,/, neurones. Hexb,/, hippocampal neurones were as viable as their wild type counterparts and, moreover, their developmental programme was unaltered because the formation of axons and of the minor processes which eventually become dendrites was similar in Hexb,/, and Hexb+/+ neurones. In contrast, once formed, a striking difference in the rate of axonal and minor process growth was observed, with changes becoming apparent after 3 days in culture and highly significant after 5 days in culture. Analysis of various parameters of axonal growth suggested that a key reason for the decreased rate of axonal growth was because of a decrease in the formation of collateral axonal branches, the major mechanism by which hippocampal axons elongate in culture. Thus, although the developmental programme with respect to axon and minor process formation and the viability of hippocampal neurones are unaltered, a significant decrease occurs in the rate of axonal and minor process growth in Hexb,/, neurones. These results appear to be in contrast to dorsal root ganglion neurones cultured from 1-month-old Sandhoff mice, in which cell survival is impaired but normal outgrowth of neurones occurs. The possible reasons for these differences are discussed. [source]


Multiple P450 genes overexpressed in deltamethrin-resistant strains of Helicoverpa armigera

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 8 2010
Alexandra Brun-Barale
Abstract BACKGROUND: Resistance to the pyrethroid insecticide deltamethrin has been a growing problem in the management of Helicoverpa armigera (Hübner) pest populations in West Africa. Detoxification by P450 enzymes appears to be a major mechanism of resistance, but the genes responsible for resistance are unknown. RESULTS: First, it was shown that deltamethrin resistance in strains from Burkina Faso (Kaya) and from Spain (Seville) were suppressible by piperonyl butoxide and by trichlorophenyl propynyl ether, thus indicating a major role of P450 enzyme(s) in resistance. The larval expression of 21 CYP genes encoding P450 enzymes from six CYP families were then compared by quantitative RT-PCR. Five genes, CYP4L5, CYP4L11, CYP6AE11, CYP332A1 and CYP9A14, were significantly overexpressed in the Kaya and Seville strains when compared with Heliar, a susceptible strain. Significant overexpression of multiple CYP genes (CYP4M6, CYP4M7, CYP6AE11, CYP9A12, CYP332A1 and CYP337B1) was also found in six field strains with different levels of resistance from Benin, Burkina Faso and Mali. CONCLUSION: Although functional or genetic evidence for the role of these P450s in resistance remains to be formally established, results suggest that multiple P450 enzymes contribute to deltamethrin resistance. This study is a first step towards the development of molecular tools for the detection of P450-based resistance in H. armigera. Copyright © 2010 Society of Chemical Industry [source]


Photochemistry and Phototoxicity of Fluocinolone 16,17-Acetonide,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005
Giorgia Miolo
ABSTRACT Fluocinolone 16,17-acetonide is a corticosteroid used topically to treat various inflammatory skin diseases. Its photoreactivity was studied under UV-A and UV-B light in aqueous buffer in the presence of oxygen. This drug is photolabile under UV-B light and, to a lesser extent, under UV-A light, which is absorbed far less. In phosphate buffer, approximately 80% of fluocinolone acetonide decomposes after 5 J/cm2 of UV-B irradiation, whereas under 30 J/cm2 of UV-A light approximately only 20% decomposes. Both the drug and its photoproducts have been evaluated through a battery of in vitro studies and found to cause photohemolysis and induce photodamage to proteins (erythrocyte ghosts, bovine serum albumin) and linoleic acid. In addition, one of the photoproducts (the 17-hydroperoxy derivative) is highly toxic in the dark. Therefore, both loss of therapeutic activity and light-induced adverse effects may be expected when patients expose themselves to sunlight after drug administration. A major mechanism for phototoxicity involves radicals forming from drug breakdown, at least under UV-B, although reactive oxygen species may play a role, particularly under UV-A. [source]


The PTEN gene in locally progressive prostate cancer is preferentially inactivated by bi-allelic gene deletion

THE JOURNAL OF PATHOLOGY, Issue 5 2006
PCMS Verhagen
Abstract PTEN is frequently inactivated during the development of many cancers, including prostate cancer, and both bi-allelic and mono-allelic PTEN inactivation may contribute to tumorigenesis. PTEN mutations in clinical cancer specimens can easily be recorded but mono- or bi-allelic gene deletions are often difficult to assess. We performed a comprehensive study to detect PTEN inactivation in 40 locally progressive clinical prostate cancer specimens obtained by transurethral resection of the prostate, utilizing a variety of complementary technical approaches. The methods to detect PTEN deletion included allelotype analysis, dual-colour FISH and array-based CGH. We also applied a novel semi-quantitative approach, assessing the PTEN-WT (wild-type): PTEN- , (pseudogene) ratio (WPR). Structural analysis of PTEN was performed by single-strand conformational polymorphism (PCR-SSCP) and sequencing. PTEN protein expression was assessed by immunohistochemistry. Our data predict complete PTEN inactivation in 12 samples (30%), nine of these by bi-allelic deletion. Loss of one PTEN copy was also detected by several methodologies but the number could not be accurately assessed. Immunohistochemistry indicated the absence of PTEN protein in 15 samples, and heterogeneous expression of the protein in eight tumours. Taken together, these data show that bi-allelic deletion is a major mechanism of PTEN inactivation in locally progressive prostate cancer. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons

THE PLANT JOURNAL, Issue 2 2005
Yoko Ishizaki
Summary Eubacterial-type multi-subunit plastid RNA polymerase (PEP) is responsible for the principal transcription activity in chloroplasts. PEP is composed of plastid-encoded core subunits and one of multiple nuclear-encoded sigma factors that confer promoter specificity on PEP. Thus, the replacement of sigma factors associated with PEP has been assumed to be a major mechanism for the switching of transcription patterns during chloroplast development. The null mutant (sig6-1) of plastid sigma factor gene AtSIG6 exhibited a cotyledon-specific pale green phenotype. Light-dependent chloroplast development was significantly delayed in the sig6-1 mutant. Genetic complementation of the mutant phenotype by the AtSIG6 cDNA demonstrated that AtSIG6 plays a key role in light-dependent chloroplast development. Northern and array-based global analyses for plastid transcripts revealed that the transcript levels of most PEP-dependent genes were greatly reduced in the sig6-1 mutant, but that the accumulation of nuclear-encoded RNA polymerase (NEP)-dependent transcripts generally increased. As the PEP , subunit and PEP-dependent trnV accumulated at normal levels in the sig6-1 mutant, the AtSIG6 knockout mutant probably retained functional PEP, and the transcriptional defects are likely to have been directly caused by AtSIG6 deficiency. Most of the AtSIG6-dependent genes are preceded by ,70 -type promoters comprised of conserved ,35/,10 elements. Thus, AtSIG6 may act as a major general sigma factor in chloroplasts during early plant development. On the other hand, the mutant phenotype was restored in older seedlings. Arabidopsis probably contains another late general sigma factor, the promoter specificity of which widely overlaps with that of AtSIG6. [source]


Allogeneic Parenchymal and Hematopoietic Tissues Differ in Their Ability to Induce Deletion of Donor-Reactive T Cells

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 12 2003
Thomas R. Jones
The establishment of immune tolerance to self antigen expressed exclusively in the periphery is a crucial yet incompletely understood feature of the immune system. A dominant concept of peripheral tolerance has been that exposure of T cells to signal one, the TCR,MHC interaction, in the absence of signal two, or costimulation, is a major mechanism of peripheral tolerance. This model suggests that any cell type that expresses MHC-peptide complexes, be they of self or foreign origin, should have the capacity to tolerize antigen-specific T cells when critical costimulatory interactions are interrupted. However, a spectrum of responses, from permanent engraftment to rapid rejection, has been observed in various transplantation models utilizing costimulatory blockade. Therefore we undertook a series experiments to directly assess the tolerogenic potential of donor hematopoietic and parenchymal cells. We find that allogeneic tissues differ profoundly in their ability to promote peripheral tolerance concurrent with combined blockade of B7-CD28 and CD40-CD40L pathways. Non-vascularized and vascularized parenchymal grafts as well as donor-specific transfusions promote varying degrees of donor-specific hyporesponsiveness, but fail to induce donor-reactive T-cell deletion; whereas establishment of stable hematopoietic chimerism promotes specific tolerance mediated by deletion of donor-reactive cells in the periphery. [source]


Silicon-augmented resistance of plants to herbivorous insects: a review

ANNALS OF APPLIED BIOLOGY, Issue 2 2009
O.L. Reynolds
Abstract Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two- and three-trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si-mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical-mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores. [source]


Crystallization and preliminary X-ray diffraction characterization of RpfF, a key DSF synthase from Stenotrophomonas maltophilia

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2009
Xian-Ya Lin
Stenotrophomonas maltophilia has emerged as a critical nosocomial opportunistic pathogen in the last few years. It is resistant to many clinically useful antibiotics; hence, new ways of combatting this bacterium are essential. Diffusible signal factor (DSF) dependent quorum sensing is a major mechanism of virulence induction in S. maltophilia, with RpfF playing a key role in DSF biosynthesis. Inhibiting S. maltophilia RpfF (SmRpfF) function via small-molecule interference may constitute a new way of treating S. maltophilia infection. SmRpfF was therefore overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = b = 148.51, c = 122.82,Å, and diffracted to a resolution of 2.25,Å. [source]


Molecular Changes in Normal Appearing White Matter in Multiple Sclerosis are Characteristic of Neuroprotective Mechanisms Against Hypoxic Insult

BRAIN PATHOLOGY, Issue 4 2003
Ursula Graumann
Multiple sclerosis is a chronic inflammatory disease of the CNS leading to focal destruction of myelin, still the earliest changes that lead to lesion formation are not known. We have studied the geneexpression pattern of 12 samples of normal appearing white matter from 10 post-mortem MS brains. Microarray analysis revealed upregulation of genes involved in maintenance of cellular homeostasis, and in neural protective mechanisms known to be induced upon ischemic preconditioning. This is best illustrated by the upregulation of the transcription factors such as HIF-1, and associated PI3K/Akt signalling pathways, as well as the upregulation of their target genes such as VEGF receptor 1. In addition, a general neuroprotective reaction against oxidative stress is suggested. These molecular changes might reflect an adaptation of cells to the chronic progressive pathophysiology of MS. Alternatively, they might also indicate the activation of neural protective mechanisms allowing preservation of cellular and functional properties of the CNS. Our data introduce novel concepts of the molecular pathogenesis of MS with ischemic preconditioning as a major mechanism for neuroprotection. An increased understanding of the underlying mechanisms may lead to the development of new more specific treatment to protect resident cells and thus minimize progressive oligondendrocyte and axonal loss. [source]


Fas/CD95/APO-1 Can Function as a Death Receptor for Neuronal Cells in Vitro and in Vivo and is Upregulated Following Cerebral Hypoxic-Ischemic Injury to the Developing Rat Brain

BRAIN PATHOLOGY, Issue 1 2000
Ursula Felderhoff-Mueser
Fas/CD95/Apo-1 is a cell surface receptor that transduces apoptotic death signals following activation and has been implicated in triggering apoptosis in infected or damaged cells in disease states. Apoptosis is a major mechanism of neuronal loss following hypoxic-ischemic injury to the developing brain, although the role of Fas in this process has not been studied in detail. In the present study, we have investigated the expression and function of Fas in neuronal cells in vitro and in vivo. Fas was found to be expressed in the 14 day old rat brain, with strongest expression in the cortex, hippocampus and cerebellum. Cross-linking of Fas induced neuronal apoptosis both in neuronal PC12 cells in culture and following intracerebral injection in vivo, indicating that neuronal Fas was functional as a death receptor. This death was shown to be caspase dependent in primary neuronal cultures and was blocked by the selective caspase 8 inhibitor IETD. Finally, cerebral hypoxia-ischemia resulted in a strong lateralised upregulation of Fas in the hippocampus, that peaked six to twelve hours after the insult and was greater on the side of injury. These results suggest that Fas may be involved in neuronal apoptosis following hypoxic-ischemic injury to the developing brain. [source]


Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents

CANCER SCIENCE, Issue 6 2004
Mami Takahashi
Studies of colon carcinogenesis in animal models are very useful to elucidate mechanisms and provide pointers to potential prevention approaches in the human situation. In the rat colon carcinogenesis model induced by azoxymethane (AOM), we have documented frequent mutations of specific genes. K-ras mutations at codon 12 were found to be frequent in hyperplastic aberrant crypt foci (ACF) and large adenocarcinomas. In addition, mutations of the ,-catenin gene in its GSK-3, phosphorylation consensus motif could also be identified in many adenomas and adenocarcinomas, and altered cellular localization of p-catenin protein was observed in all of the dysplastic ACF, adenomas and adenocarcinomas examined, indicating that activation of Wnt signaling by accumulation of ,-catenin is a major mechanism in the AOM-induced colon carcinogenesis model. Frequent gene mutations of ,-catenin and altered cellular localization of the protein are also features of AOM-induced colon tumors in mice. Expression of enzymes associated with inflammation, such as inducible nitric oxide synthase (INOS) and the inducible type of cyclooxyge-nase (COX), COX-2, is increased in AOM-induced rat colon carcinogenesis, and overproduction of nitric oxide (NO) and prostaglandins is considered to be involved in colon tumor development. We have demonstrated that increased expression of INOS is an early and important event occurring in step with ,-catenin alteration in rat colon carcinogenesis. Activation of K-ras was also found to be involved in up-regulation of INOS in the presence of inflammatory stimuli. In addition, expression levels of prostaglandin E2 (PGE2) receptors may be altered in colon cancers. For example, the EP, and EP2 subtypes have been shown to be up-regulated and EP3 down-regulated in AOM-induced colon cancers in rats and mice. EP, and EP4 appear to be involved in ACF formation, while alteration in EP2 and EP3 is considered to contribute to later steps in colon carcinogenesis. Increased expression of some other gene products, such as the targets of Wnt/,-catenin signaling, have also been reported. The further accumulation of data with this chemically-induced animal colon carcinogenesis model should provide useful information for understanding colorectal neoplasia in man. [source]


Use of Short Duplexes for the Analysis of the Sequence-Dependent Cleavage of DNA by a Chemical Nuclease, a Manganese Porphyrin

CHEMBIOCHEM, Issue 12 2005
Sophie Mourgues
Abstract A manganese porphyrin, manganese(III)-bis(aqua)- meso -tetrakis(4- N -methylpyridiniumyl)porphyrin, in the presence of KHSO5 is able to perform deoxyribose or guanine oxidation depending on its mode of interaction with DNA. These two reactions involve an oxygen-atom transfer or an electron transfer, respectively. The oxidative reactivity of the manganese-oxo porphyrin was compared on short oligonucleotide duplexes of different sequences. The major mechanism of DNA damage is due to deoxyribose hydroxylation at a site of strong interaction, an (A,T)3 sequence. Guanine oxidation by electron transfer was found not to be competitive with this major mechanism. It was found that a single intrastrand guanine was three orders of magnitude less reactive than an (A,T)3 sequence. The reactivity of a 5,-GG sequence was found to be intermediate and was estimated to be two orders of magnitude less than that of an (A,T)3 site. Short oligonucleotide duplexes, as double-stranded-DNA models, proved to be convenient tools for the study of the comparative reactivity of this reagent toward different sequences of DNA. However, they showed a particular reactivity at their terminal base pairs (the "end effect") that biased their modeling capacity for double-helix-DNA models. [source]


Impact of transition zones, variable fluid viscosity and anthropogenic activities on coupled fluid-transport processes in a shallow salt-dome environment

GEOFLUIDS (ELECTRONIC), Issue 3 2009
F. MAGRI
Abstract In the Schleswig,Holstein region (S,H) of Germany, most observed near-surface saline ground waters originate from dissolution of shallow salt domes. Previous numerical simulations of thermohaline flow clarified the major mechanisms controlling large-scale density-driven flow. It has been found that, in addition to topographically driven flow, gravitational and thermohaline convection are the primary mechanisms for extensive solute exchange between shallow and deep aquifers. Geological features such as glacial channels control recharge/discharge processes at the surface. Here we address several previously unresolved issues: (i) the impact of a permeable unit (transition zone) between the salt and adjacent units; (ii) the role of variable brine viscosity in affecting regional- (i.e. km-) scale heat and mass patterns; and (iii) the influence of anthropogenic activities such as pumping stations on density-driven flow. We found that geophysical factors play a major role in determining the dynamics of fluid processes. The transition zone significantly influences the flow field and the distribution of heat, slowing the formation of highly concentrated salty plumes. The impact of variable fluid viscosity on the coupled heat and brine flow is twofold. In a colder and highly concentrated environment, such as a shallow salt-dome crest, it retards brine flow. In a less saline environment, variable fluid viscosity enhances thermally induced upward fluid flow. Groundwater extraction from production wells only affects brine and heat flow locally within the upper aquifers. [source]


Biliary physiology and disease: Reflections of a physician-scientist,

HEPATOLOGY, Issue 4 2010
Gustav Paumgartner
A review is presented of Gustav Paumgartner's five decades of research and practice in hepatology focusing on biliary physiology and disease. It begins with studies of the excretory function of the liver including hepatic uptake of indocyanine green, bilirubin, and bile acids. The implications of these studies for diagnosis and understanding of liver diseases are pointed out. From there, the path of scientific research leads to investigations of hepatobiliary bile acid transport and the major mechanisms of bile formation. The therapeutic effects of the hydrophilic bile acid, ursodeoxycholic acid, have greatly stimulated these studies. Although ursodeoxycholic acid therapy for dissolution of cholesterol gallstones and some other nonsurgical treatments of gallstones were largely superseded by surgical techniques, ursodeoxycholic acid is currently considered the mainstay of therapy of some chronic cholestatic liver diseases, such as primary biliary cirrhosis. The major mechanisms of action of ursodeoxycholic acid therapy in cholestatic liver diseases are discussed. An attempt is made to illustrate how scientific research can lead to advances in medical practice that help patients. (HEPATOLOGY 2010:51:1095,1106.) [source]