Major Interactions (major + interaction)

Distribution by Scientific Domains


Selected Abstracts


QSAR for Inhibition of Pseudomonas Species Lipase by 1-Acyloxy-3- N-n -octylcarbamyl-benzenes

MOLECULAR INFORMATICS, Issue 3 2009
Shyh-Ying Chiou
Abstract 1-Acyloxy-3- N-n -octylcarbamyl-benzenes (1,9) are synthesized to characterize the Quantitative Structure,Activity Relationship (QSAR) for the Third Acyl Group Binding Site (TACS) of Pseudomonas species lipase. Inhibitors 1,9 are characterized as pseudo or alternate substrate inhibitors of the enzyme. The inhibition constant (Ki) and carbamylation constant (k2) for the enzyme inhibitions by inhibitors 1,9 are determined. The carbamate carbons of the n -octylcarbamyl moieties of inhibitors 1,9 are nucleophilically attacked by the active site serine of the enzyme and the n -octylcarbamyl groups of inhibitors 1,9 are bound to the Acyl Group Binding Site (ACS) of the enzyme. Both pKi and log,k2 values are linearly corrected with the Hansch hydrophobicity , values of the substituents of the acyl moieties of inhibitors 1,7. The slopes for these corrections are 0.13 and 0.02, respectively. This result suggests that the enzyme inhibitions by inhibitors 1,7 have a common mechanism. Thus, all acyl moieties of inhibitors 1,7 should bind to the TACS of the enzyme since the acyl and carbamyl moieties of inhibitors 1,7 are meta to each other. This result also indicates that the major interaction between the acyl moiety of inhibitors 1,7 and the TACS of the enzyme is primarily the hydrophobic interaction. The more hydrophobic characters of inhibitors 1,7 are, the more tightly these inhibitors bind to the enzyme. In contrast, 1-triphenylacetoxy-3- N-n -octylcarbamyl-benzene (8) and 1-trimethylacetoxy-3- N-n -octylcarbamyl-benzene (9) do not bind to the TACS of the enzyme due to the fact that the inhibitions by both inhibitors are not linearly correlated with ,. It is possible that these two inhibitors are too bulky to fit into the TACS of the enzyme. [source]


Collectin structure: A review

PROTEIN SCIENCE, Issue 9 2000
Kjell Håkansson
Abstract Colleetins are animal calcium dependent lectins that target the carbohydrate structures on invading pathogens, resulting in the agglutination and enhanced clearance of the microorganism. These proteins form trimers that may assemble into larger oligomers. Each polypeptide chain consists of four regions: a relatively short N-terminal region, a collagen like region, an ,-helical coiled-coil, and the lectin domain. Only primary structure data are available for the N-terminal region, while the most important features of the collagen-like region can be derived from its homology with collagen. The structures of the ,-helical coiled-coil and the lectin domain are known from crystallographic studies of mannan binding protein (MBP) and lung surfactant protein D (SP-D). Carbohydrate binding has been structurally characterized in several complexes between MBP and carbohydrate; all indicate that the major interaction between carbohydrate and collectin is the binding of two adjacent carbohydrate hydroxyl group to a collectin calcium ion. In addition, these hydroxyl groups hydrogen bond to some of the calcium amino acid ligands. While each collectin trimer contains three such carbohydrate binding sites, deviation from the overall threefold symmetry has been demonstrated for SP-D, which may influence its binding properties. The protein surface between the three binding sites is positively charged in both MBP and SP-D. [source]


Interactions Between Extracellular Stimuli and Excitation Waves in an Atrial Reentrant Loop

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2003
CHAD R. JOHNSON B.S.E.
Introduction: The interactions between extracellular stimuli and excitation waves propagating in a reentrant loop are a complex function of stimulus parameters, structural properties, membrane state, and timing. Here the goal was a comprehensive understanding of the mechanisms and frequencies of the major interactions between the advancing excitation wave and a single extracellular stimulus, separated from issues of anatomic or geometric complexity. Methods and Results: A modernized computer model of a thin ring of uniform tissue that included a pair of extracellular stimulus electrodes (anode/cathode) was used to model one-dimensional cardiac reentry. Questions and results included the following: (1) What are the major interactions between a stimulus and the reentrant propagation wave, and are they induced near the cathode or near the anode; and, for each interaction, what are the initiating amplitude range and timing interval? At the cathode, the well-known mechanism of retrograde excitation terminated reentry; changes in timing or amplitude produced double-wave reentry or phase reset. At the anode, termination occurred at different cells depending on stimulus amplitude. (2) Relatively how often did termination occur at the anode? For most stimulus amplitudes, termination occurred more often at the anode than at the cathode, although not always at the same cell. (3) With random timing, what is the probability of terminating reentry? Stimulation for 5 msec terminated reentry with a probability from 0% to approximately 10%, as a function of increasing stimulus amplitude. Conclusion: A single extracellular stimulus can initiate major changes in reentrant excitation via multiple mechanisms, even in a simple geometry. Termination of reentry, phase shifts, or double-wave reentry each occurs over well-defined ranges of stimulus amplitude and timing. (J Cardiovasc Electrophysiol, Vol. 14, pp. ***-***, October 2003) [source]


Effect of stationary phase polarity on the retention of ionic liquid cations in reversed phase liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 17 2006
Sylwia Kowalska
Abstract Chromatographic analysis of ionic liquids on different types of packings offers interesting possibility to determine their retention mechanism. As a consequence, the major interactions between stationary phase ligands and analyzed chemical entities can be defined. The main aim of this work was to analyze cations of ionic liquids on chemically bonded stationary phases with specific structural properties. The attempt to predict the main interactions between positive ions of ionic liquids and stationary phase ligands was undertaken. For that purpose, butyl, octyl, octadecyl, phenyl, aryl, mixed, alkylamide, and cholesterolic packings were chosen and applied to the analysis of six most commonly used ionic liquids' cations. Obtained results indicate mainly dispersive and ,,, type of interaction part in the retention mechanism of analyzed compounds. [source]


Bi2O3,MoO3 Binary System: An Alternative Ultralow Sintering Temperature Microwave Dielectric

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2009
Di Zhou
Preparation, phase composition, microwave dielectric properties, and chemical compatibility with silver and aluminum electrodes were investigated on a series of single-phase compounds in the Bi2O3,MoO3 binary system. All materials have ultralow sintering temperatures <820°C. Eight different xBi2O3,(1,x)MoO3 compounds between 0.2,x,0.875 were fabricated and the associated microwave dielectric properties were studied. The ,-Bi2Mo2O9 single phase has a positive temperature coefficient of resonant frequency (TCF) about +31 ppm/°C, with a permittivity ,r=38 and Qf=12 500 GHz at 300 K and at a frequency of 6.3 GHz. The ,-Bi2Mo3O12 and ,-Bi2MoO6 compounds both have negative temperature coefficient values of TCF,,215 and ,,114 ppm/°C, with permittivities of ,r=19 and 31, Qf=21 800 and 16 700 GHz at 300 K measured at resonant frequencies of 7.6 and 6.4 GHz, respectively. Through sintering the Bi2O3,2.2MoO3 at 620°C for 2 h, a composite dielectric containing both , and , phase can be obtained with a near-zero temperature coefficient of frequency TCF=,13 ppm/°C and a relative dielectric constant ,r=35, and a large Qf,12 000 GHz is also observed. Owing to the frequent difficulty of thermochemical interactions between low sintering temperature materials and the electrode materials during the cofiring, preliminary investigations are made to determine any major interactions with possible candidate electrode metals, Ag and Al. From the above results, the low sintering temperature, good microwave dielectric properties, chemical compatibility with Al metal electrode, nontoxicity and price advantage of the Bi2O3,MoO3 binary system, all indicate the potential for a new material system with ultralow temperature cofiring for multilayer devices application. [source]