Major Histocompatibility Complex Class II (major + histocompatibility_complex_class_ii)

Distribution by Scientific Domains


Selected Abstracts


MHC Class II epitope predictive algorithms

IMMUNOLOGY, Issue 3 2010
Morten Nielsen
Summary Major histocompatibility complex class II (MHC-II) molecules sample peptides from the extracellular space, allowing the immune system to detect the presence of foreign microbes from this compartment. To be able to predict the immune response to given pathogens, a number of methods have been developed to predict peptide,MHC binding. However, few methods other than the pioneering TEPITOPE/ProPred method have been developed for MHC-II. Despite recent progress in method development, the predictive performance for MHC-II remains significantly lower than what can be obtained for MHC-I. One reason for this is that the MHC-II molecule is open at both ends allowing binding of peptides extending out of the groove. The binding core of MHC-II-bound peptides is therefore not known a priori and the binding motif is hence not readily discernible. Recent progress has been obtained by including the flanking residues in the predictions. All attempts to make ab initio predictions based on protein structure have failed to reach predictive performances similar to those that can be obtained by data-driven methods. Thousands of different MHC-II alleles exist in humans. Recently developed pan-specific methods have been able to make reasonably accurate predictions for alleles that were not included in the training data. These methods can be used to define supertypes (clusters) of MHC-II alleles where alleles within each supertype have similar binding specificities. Furthermore, the pan-specific methods have been used to make a graphical atlas such as the MHCMotifviewer, which allows for visual comparison of specificities of different alleles. [source]


Major histocompatibility complex class II, fetal skin dendritic cells are potent accessory cells of polyclonal T-cell responses

IMMUNOLOGY, Issue 2 2000
A. Elbe-Bürger
Summary Whereas dendritic cells (DC) and Langerhans cells (LC) isolated from organs of adult individuals express surface major histocompatibility complex (MHC) class II antigens, DC lines generated from fetal murine skin, while capable of activating naive, allogeneic CD8+ T cells in a MHC class I-restricted fashion, do not exhibit anti-MHC class II surface reactivity and fail to stimulate the proliferation of naive, allogeneic CD4+ T cells. To test whether the CD45+ MHC class I+ CD80+ DC line 80/1 expresses incompetent, or fails to transcribe, MHC class II molecules, we performed biochemical and molecular studies using Western blot and polymerase chain reaction analysis. We found that 80/1 DC express MHC class II molecules neither at the protein nor at the transcriptional level. Ultrastructural examination of these cells revealed the presence of a LC-like morphology with indented nuclei, active cytoplasm, intermediate filaments and dendritic processes. In contrast to adult LC, no LC-specific cytoplasmic organelles (Birbeck granules) were present. Functionally, 80/1 DC in the presence, but not in the absence, of concanavalin A and anti-T-cell receptor monoclonal antibodies stimulated a vigorous proliferative response of naive CD4+ and CD8+ T cells. Furthermore, we found that the anti-CD3-induced stimulation of naive CD4+ and CD8+ T cells was critically dependent on the expression of Fc,R on 80/1 DC and that the requirement for co-stimulation depends on the intensity of T-cell receptor signalling. [source]


In vitro differentiation of lineage-negative bone marrow cells into microglia-like cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010
Daisuke Noto
Abstract Microglia are believed to be the only resident immune cells in the CNS, originating from hematopoietic-derived myeloid cells and invading the CNS during development. However, the detailed mechanisms of differentiation and transformation of microglial cells are not fully understood. Here, we demonstrate that murine microglial cells show two morphological forms in vitro, namely, small round cells expressing CD11b, Iba1, triggering receptor expressing on myeloid cells-2 (TREM2), and weakly expressing major histocompatibility complex class II and large flat cells expressing only CD11b and Iba1. Moreover, lineage-negative bone marrow (LN) cells cultured with primary mixed glial culture cells could differentiate into only the small round microglia-like cells, despite the absence of CCR2 and Gr-1 expression. Addition of macrophage colony stimulating factor (M-CSF) to LN cell culture allowed the proliferation and expression of TREM2 in LN cells, and the addition of neutralizing anti-M-CSF antibodies suppressed the proliferation of LN cells despite the expression of TREM2. When LN cells were cultured with M-CSF, the number of small round cells in the culture was considerably low, indicating that the small round morphology of the immature cells is not maintained in the presence of only M-CSF. On the other hand, when LN cells were grown in the presence of astrocytes, the small round cells were maintained at a concentration of approximately 30% of the total population. Therefore, cell,cell contact with glial cells, especially astrocytes, may be necessary to maintain the small round shape of the immature cells expressing TREM2. [source]


Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and lipopolysaccharide responsiveness

IMMUNOLOGY, Issue 4 2007
M. Maximina Bertha Moreno-Altamirano
Summary Monocytes constitute 5,10% of total human peripheral blood leucocytes and remain in circulation for several days before replenishing the tissue macrophage populations. Monocytes display heterogeneity in size, granularity and nuclear morphology, and in the expression of cell membrane molecules, such as CD14, CD16, CD32, CD64, major histocompatibility complex class II, CCR2, CCR5, among others. This has led to the suggestion that individual monocyte/macrophage populations have specialized functions within their microenvironments. This study provides evidence for the occurrence of two peripheral blood monocyte subpopulations on the basis of their differential expression of GM1, a sphingolipid found mostly in lipid rafts, a CD14+ GM1low population and a CD14+ GM1high population comprising about 97·5% and 2·5% of total CD14+ cells, respectively. GM1 expression correlates with functional differences in terms of endocytic activity, susceptibility to mycobacterial infection, and response to lipopolysaccharide (LPS) (modulation of Toll-like receptor-4 expression). CD14+ GM1low cells proved to be less endocytic and more responsive to LPS, whereas CD14+ GM1high cells are more endocytic and less responsive to LPS. In addition, during monocyte to macrophage differentiation in vitro, the percentage of CD14+ GM1high cells increases from about 2·5% at day 1 to more than 50% at day 7 of culture. These results suggest that GM1low and GM1high monocytes in peripheral blood, represent either different stages of maturation or different subsets with specialized activities. The expression of CD16 on GM1high favours the first possibility and, on the other hand that up-regulation of GM1 expression and probably lipid rafts function is involved in the monocyte to macrophage differentiation process. [source]


Sulphasalazine inhibits macrophage activation: inhibitory effects on inducible nitric oxide synthase expression, interleukin-12 production and major histocompatibility complex II expression

IMMUNOLOGY, Issue 4 2001
György Haskó
Summary The anti-inflammatory agent sulphasalazine is an important component of several treatment regimens in the therapy of ulcerative colitis, Crohn's disease and rheumatoid arthritis. Sulphasalazine has many immunomodulatory actions, including modulation of the function of a variety of cell types, such as lymphocytes, natural killer cells, epithelial cells and mast cells. However, the effect of this agent on macrophage (M,) function has not been characterized in detail. In the present study, we investigated the effect of sulphasalazine and two related compounds , sulphapyridine and 5-aminosalicylic acid , on M, activation induced by bacterial lipopolysaccharide (LPS) and interferon-, (IFN-,). In J774 M, stimulated with LPS (10 µg/ml) and IFN-, (100 U/ml), sulphasalazine (50,500 µm) suppressed nitric oxide (NO) production in a concentration-dependent manner. The expression of the inducible NO synthase (iNOS) was suppressed by sulphasalazine at 500 µm. Sulphasalazine inhibited the LPS/IFN-,-induced production of both interleukin-12 (IL-12) p40 and p70. The suppression of both NO and IL-12 production by sulphasalazine was superior to that by either sulphapyridine or 5-aminosalicylic acid. Although the combination of LPS and IFN-, induced a rapid expression of the active forms of p38 and p42/44 mitogen-activated protein kinases and c-Jun terminal kinase, sulphasalazine failed to interfere with the activation of any of these kinases. Finally, sulphasalazine suppressed the IFN-,-induced expression of major histocompatibility complex class II. These results demonstrate that the M, is an important target of the immunosuppressive effect of sulphasalazine. [source]


Early Alteration in Leukocyte Populations and Th1/Th2 Function in Ethanol-Consuming Mice

ALCOHOLISM, Issue 8 2001
Shawn Starkenburg
Background: Chronic alcohol consumption polarizes the immune response away from Th1-mediated cell-mediated immunity. In the present report we investigate the first onset of alteration in immune parameters during ethanol consumption in terms of changes in splenic leukocyte cellularity and surface phenotype as well as alterations in Th1 and Th2 function. Methods: BALB/c and C57BL/6 mice were fed ethanol-containing liquid diets, were pair-fed an isocaloric liquid control diet, or were fed solid diet and water ad libitum for up to 12 days. At intervals during the feeding period, splenic leukocytes were assessed for phenotypic markers by flow cytometry and for their ability to support antigen-induced interferon-, (IFN,) production in a coculture system. Mice were bled at intervals throughout the feeding period, and serum immunoglobin E (IgE) and alcohol levels were determined. Results: Data show that phenotypic and functional alterations occur within the first few days of alcohol consumption. Both liquid diets affect splenic cellularity, and by dietary day 5, ethanol-containing liquid diets further reduce B and NK cell numbers. The decline in B cells is accompanied by a concomitant decline in the amount of major histocompatibility complex class II expressed on this population. Functional alteration in Th1-mediated IFN, production occurred in the population fed ethanol-containing liquid diets by dietary day 5. Th2 function, as indicated by systemic serum IgE levels in these unimmunized mice, is increased by dietary day 6 to 8 and correlated with significant blood alcohol levels. Conclusions: Ethanol consumption by mice causes a rapid decrease in splenic cellularity accompanied by a decrease in Th1 function and a rapid increase in systemic IgE levels. [source]


Impact of polymorphisms of the major histocompatibility complex class II, interleukin-10, tumor necrosis factor-, and cytotoxic T-lymphocyte antigen-4 genes on inhibitor development in severe hemophilia A

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2009
A. PAVLOVA
Summary.,Background: Approximately 25% of severe hemophilia A (HA) patients develop antibodies to factor VIII protein. Patients: In the present case-controlled cohort study, 260 severely affected, mutation-type-matched HA patients were studied for association of human leukocyte antigen (HLA) class II molecules and polymorphisms in the genes encoding interleukin-10 (IL-10), tumor necrosis factor-, (TNF-,) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) and development of inhibitors. Results: Our results demonstrate a higher frequency of DRB1*15 and DQB1*0602 alleles as well as of the haplotype DRB1*15/DQB1*0602 in inhibitor patients [odds ratio (OR) 1.9; P < 0.05]. In TNF-,, the A allele of the ,308G>A polymorphism was found with higher frequency in the inhibitor cohort (0.22 vs. 0.13, OR 1.80). This finding was more pronounced for the homozygous A/A genotype (OR 4.7). For IL-10, the ,1082G allele was observed more frequently in patients with inhibitors (0.55 vs. 0.43; P = 0.008). The functional cytokine phenotype was determined for the first time, on the basis of the genetic background, and this showed that 12% of patients with inhibitors were high-TNF-,/high-IL-10 producers, as compared with 3% of non-inhibitor patients (OR 4.4). A trend for a lower frequency of the A allele of the CT60 polymorphism in CTLA-4 was found in inhibitor patients (0.42 vs. 0.50). Conclusions: In conclusion, the reported data clearly highlighted the participation of HLA molecules in inhibitor formation in a large cohort of patients. The higher frequencies of the ,308G>A polymorphism in TNF-, and ,1082A>G in IL-10 in inhibitor patients confirmed the earlier published data. The CT60 single-nucleotide polymorphism in CTLA-4 is of apparently less importance. [source]


Significance of local immunity in hen reproductive organs

ANIMAL SCIENCE JOURNAL, Issue 3 2004
Yukinori YOSHIMURA
ABSTRACT The current paper describes aspects of local immunity in the ovary and oviduct, and the significance of immunity to reproductive functions in hens. The immunocompetent cell populations in the ovary and oviduct change with a positive correlation to sexual activity, and gonadal steroid is one of the key factors in the increase. Local immune responses mediated by major histocompatibility complex class II and T cell subsets occur in response to infection by Salmonella enteritidis, which may contaminate eggs. In the ovary, immunocompetent cells are also suggested to play roles in the regulation of ovarian functions. Macrophages and T cells are likely to enhance the regression of atretic follicles to maintain the ovarian tissue microenvironment. Autoantibodies to ovarian tissues appeared in the hens with low egg laying frequency, suggesting that the auto-antibodies may be one of the factors in the decline of egg production. In the oviduct, local immunity possibly has a role in the selection of sperm, though the immunoreactions may also affect sperm survival leading to the decline in fertility. The concentration of yolk IgY, which plays a role in maternal immunity transmission, significantly decreases with the aging of birds, whereas it is significantly increased by estrogen. Therefore, the immune system plays significant roles not only in defense against infection, but also in the functions of reproductive organs. Investigations on the local immune system in the reproductive organs and factors affecting it are of importance for the production of sterile eggs and improvement of reproductive functions. [source]


Novel function of DUSP14/MKP6 (dual specific phosphatase 14) as a nonspecific regulatory molecule for delayed-type hypersensitivity

BRITISH JOURNAL OF DERMATOLOGY, Issue 5 2007
Y. Nakano
Summary Background, Nonspecific unresponsive states of delayed-type hypersensitivity (DTH) to unrelated antigens are induced in mice by a single administration of hapten. In these studies, we found a unique regulatory mechanism of contact hypersensitivity (CHS) mediated by nonspecific suppressor factor (NSF) induced by the intravenous injection of hapten-conjugated syngeneic spleen cells. NSF is a , 45-kDa protein released from the macrophage-like suppressor cells and binds selectively to dendritic cells (DCs). Moreover, NSF-treated DCs release a second , 20-kDa NSF (NSFint). Objectives, To try and identify NSF and characterize its function. Methods, The suppressor activity was evaluated by inhibition of the passive transfer of CHS by the effector cells sensitized with hapten and the antigen-presenting cell (APC) activity of hapten-primed draining lymph node cells (DLNCs) to induce CHS. NSF-containing supernatants obtained from the culture of spleen cells from mice that had been injected intravenously with oxazolone-conjugated syngeneic spleen cells 7 days before were prepared and purified with a Green A dye-affinity column, DEAE column and Sephacryl S-200 column. Then, samples of molecular mass of , 45 kDa were separated by native-PAGE (polyacrylamide gel electrophoresis) and nonreducing sodium dodecyl sulphate (SDS)-PAGE. After confirming the suppressor activity of proteins of , 45 kDa separated by native-PAGE, samples were separated by nonreducing SDS-PAGE, transferred onto polyvinylidene difluoride membranes and analysed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Results, Proteins of , 45 kDa eluted from a Sephacryl S-200 column and the slice of native-PAGE gel exhibited the strong suppressor activity. Analyses using MALDI-TOF mass spectrometry and MASCOT algorithm of the protein bands around 45 kDa separated by nonreducing SDS-PAGE identified NSF as a 22·5-kDa protein, dual specific phosphatase 14/MAP-kinase phophatase-6 (DUSP14/MKP6), which functions as a negative regulator of the MAP-kinase signalling. Western blot analyses revealed that recombinant DUSP14 (rDUSP14) exists as the mixture of 22·5-kDa monomer and 45-kDa dimer under nonreducing conditions, and monomers under reducing conditions. Treatment with rDUSP14 at 4 °C for 2 h suppressed the ability of effector cells to transfer CHS dose dependently and the APC function of DLNCs to induce CHS. Epicutaneous application of rDUSP14 immediately after challenge inhibited the subsequent CHS expression. rDUSP14 was bound specifically by major histocompatibility complex class II (Ia)-positive spleen cells (presumably DCs). The suppressor activity of NSF was neutralized by anti-DUSP14 monoclonal antibody. Expression of DUSP14 mRNA in the spleen was upregulated parallel to the unresponsive state induced by hapten-conjugated cells. NSF, NSFint and rDUSP14 exhibited the phosphatase activity towards p -nitrophenyl phosphate in vitro as alkaline phosphatase. Conclusions, These studies indicate for the first time that NSF is a dimer of DUSP14 secreted by macrophage-like suppressor cells by stimulation with hapten-conjugated cells and exerts a regulatory function on CHS through DCs as a secreted phosphatase. [source]


Role of the transgenic human thyrotropin receptor A-subunit in thyroiditis induced by A-subunit immunization and regulatory T cell depletion

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2008
Y. Mizutori
Summary Transgenic BALB/c mice that express intrathyroidal human thyroid stimulating hormone receptor (TSHR) A-subunit, unlike wild-type (WT) littermates, develop thyroid lymphocytic infiltration and spreading to other thyroid autoantigens after T regulatory cell (Treg) depletion and immunization with human thyrotropin receptor (hTSHR) adenovirus. To determine if this process involves intramolecular epitope spreading, we studied antibody and T cell recognition of TSHR ectodomain peptides (A,Z). In transgenic and WT mice, regardless of Treg depletion, TSHR antibodies bound predominantly to N-terminal peptide A and much less to a few downstream peptides. After Treg depletion, splenocytes from WT mice responded to peptides C, D and J (all in the A-subunit), but transgenic splenocytes recognized only peptide D. Because CD4+ T cells are critical for thyroid lymphocytic infiltration, amino acid sequences of these peptides were examined for in silico binding to BALB/c major histocompatibility complex class II (IA,d). High affinity subsequences (inhibitory concentration of 50% < 50 nm) are present in peptides C and D (not J) of the hTSHR and mouse TSHR equivalents. These data probably explain why transgenic splenocytes do not recognize peptide J. Mouse TSHR mRNA levels are comparable in transgenic and WT thyroids, but only transgenics have human A-subunit mRNA. Transgenic mice can present mouse TSHR and human A-subunit-derived peptides. However, WT mice can present only mouse TSHR, and two to four amino acid species differences may preclude recognition by CD4+ T cells activated by hTSHR-adenovirus. Overall, thyroid lymphocytic infiltration in the transgenic mice is unrelated to epitopic spreading but involves human A-subunit peptides for recognition by T cells activated using the hTSHR. [source]