Major Birch Pollen Allergen (major + birch_pollen_allergen)

Distribution by Scientific Domains


Selected Abstracts


Simultaneous flow cytometric detection of basophil activation marker CD63 and intracellular phosphorylated p38 mitogen-activated protein kinase in birch pollen allergy,

CYTOMETRY, Issue 1 2009
Nicolaas E. Aerts
Abstract Background: Phosphorylation of p38 MAPK is a crucial step in IgE-receptor signaling in basophils. The relation of p38 MAPK to the well-validated diagnostic cell surface marker CD63 has not been evaluated in a clinical allergy model. Methods: Expression of CD63 and phosphorylation of p38 MAPK were analyzed flow cytometrically in anti-IgE-gated basophils from 18 birch pollen allergic patients, five grass pollen allergic patients, and five healthy individuals, after 3 and 20 min of stimulation with recombinant major birch pollen allergen (rBet v 1). Additional time points and the influence of p38 MAPK inhibitor SB203580 were studied in birch pollen allergic patients. Results: Phospho-p38 MAPK and CD63 were expressed dose-dependently in birch pollen allergic patient basophils within 1 minute of rBet v 1 stimulation. P38 MAPK phosphorylation was fastest and subsided gradually while CD63 expression remained elevated for at least 20 min. Inhibition of p38 MAPK significantly inhibited CD63 upregulation. With optimal stimulation of the cells (1 ,g/mL), sensitivity and specificity for the discrimination between patients and a group of control individuals (grass pollen allergic patients and healthy controls) were 94% and 100% for CD63 at 3 and 20 min and for phospho-p38 MAPK at 3 min. Conclusion: Antigen-induced p38 MAPK phosphorylation in human basophils essentially contributes to CD63 upregulation. It is a sensitive and specific intracellular marker for allergy diagnosis and offers new insight into the mechanisms of basophil activation. © 2008 Clinical Cytometry Society [source]


Bet,v,1, the major birch pollen allergen, initiates sensitization to Api,g,1, the major allergen in celery: evidence at the T,cell level

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2003
Barbara Bohle
Abstract Due to IgE cross-reactivity, birch pollen-allergic individuals frequently develop type,I hypersensitivity reactions to celery tuber. We evaluated the T,cell response to the major allergen in celeriac, Api,g,1, and the cellular cross-reactivity with its homologous major allergen in birch pollen, Bet,v,1. Api,g,1-specific T,cell lines (TCL) and clones (TCC) were established from peripheralblood mononuclear cells of allergic patients. Epitope mapping of Api,g,1 with overlapping Api,g,1-derived peptides revealed one dominant T,cell-activating region, Api,g,1109,126. TCL and TCC generated with Api,g,1 cross-reacted with the birch pollen allergen and, although initially stimulated with the food allergen, cellular responses to Bet,v,1 were stronger than to Api,g,1. Epitopemapping with Bet,v,1-derived peptides revealed that T,cells specific for several distinct epitopes distributed over the complete Bet,v,1 molecule could be activated by Api,g,1. Bet,v,1109,126 was identified as the most important T,cell epitope for cross-reactivity with Api,g,1. This epitope shares 72% amino acid sequence similarity with the major T,cell-activating region of the food allergen, Api,g,1109,126. Our data provide evidence that humoral as well as cellular reactivity to the major celery allergen is predominantly based on cross-reactivity with the major birch pollen allergen. The activation of Bet,v,1-specific Th2 cells by Api,g,1, in particular outside the pollen season, may have consequences for birch pollen-allergic individuals. [source]


The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts

ALLERGY, Issue 7 2010
J. T. M. Buters
To cite this article: Buters JTM, Weichenmeier I, Ochs S, Pusch G, Kreyling W, Boere AJF, Schober W, Behrendt H. The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy 2010; 65: 850,858. Abstract Background:, Proof is lacking that pollen count is representative for allergen exposure, also because allergens were found in nonpollen-bearing fractions of ambient air. Objective:, We monitored simultaneously birch pollen and the major birch pollen allergen Bet v 1 in different size fractions of ambient air from 2004 till 2007 in Munich, Germany. Methods:, Air was sampled with a ChemVol® high-volume cascade impactor equipped with stages for particulate matter (PM)>10 ,m, 10 ,m>PM>2.5 ,m, and 2.5 ,m>PM>0.12 ,m. Allergen was determined with a Bet v 1-specific ELISA. Pollen count was assessed with a Burkard pollen trap. We also measured the development of allergen in pollen during ripening. Results:, About 93 ± 3% of Bet v 1 was found in the PM,>,10 ,m fraction, the fraction containing birch pollen. We did not measure any Bet v 1 in 2.5 ,m,>,PM,>,0.12 ,m. Either in Munich no allergen was in this fraction or the allergen was absorbed to diesel soot particles that also deposit in this fraction. Pollen released 115% more Bet v 1 in 2007 than in 2004. Also within 1 year, the release of allergen from the same amount of pollen varied more than 10-fold between different days. This difference was explained by a rapidly increasing expression of Bet v 1 in pollen in the week just before pollination. Depending on the day the pollen is released during ripening, its potency varies. Conclusion:, In general, pollen count and allergen in ambient air follow the same temporal trends. However, because a 10-fold difference can exist in allergen potency of birch pollen, symptoms might be difficult to correlate with pollen counts, but perhaps better with allergen exposure. [source]


Association of allergic patients' phenotypes with IgE reactivity to recombinant pollen marker allergens

ALLERGY, Issue 3 2010
A. Twardosz-Kropfmüller
To cite this article: Twardosz-Kropfmüller A, Singh MB, Niederberger V, Horak F, Kraft D, Spitzauer S, Valenta R, Swoboda I. Association of allergic patients' phenotypes with IgE reactivity to recombinant pollen marker allergens. Allergy 2010; 65: 296,303. Abstract Background:, During the last decade allergen molecules from several allergen sources have been produced by recombinant DNA technology. The aim of this study was to investigate whether IgE reactivity to recombinant pollen allergens with broad and narrow cross-reactivity is associated with clinical phenotypes of allergic sensitization. Methods:, Serum IgE reactivity to a panel of six recombinant birch and grass pollen allergens was measured by ELISA in pollen sensitized patients from Central Europe to define groups of patients with exclusive IgE reactivity to rBet v 1, with exclusive reactivity to major grass pollen allergens (rPhl p 1, rPhl p 2, rPhl p 5) and with IgE reactivity to cross-reactive pollen allergens (rBet v 2, rPhl p 7). Patients' clinical phenotypes were recorded. IgE responses to tree, grass and weed pollen as well as plant food extracts were evaluated in vitro by CAP-FEIA and clinical sensitivities were confirmed in vivo by skin prick testing. Results:, IgE reactivity to the recombinant major birch pollen allergen, rBet v 1, was associated with sensitization to pollen from birch, taxonomically related trees and to certain plant-derived food. Reactivity to the recombinant timothy grass pollen allergens, rPhl p 1, rPhl p 2, rPhl p 5, indicated sensitization to pollen from grasses. Patients reacting with the highly cross-reactive allergen rPhl p 7 were polysensitized to pollen from unrelated trees, grasses and weeds and rBet v 2-positive patients were polysensitized to pollen and plant-derived food from unrelated plants. Conclusions:, IgE reactivity to recombinant marker allergens is associated with clinical phenotypes of allergic sensitization and may be useful for the selection of treatment strategies. [source]


The impact of pollen-related food allergens on pollen allergy

ALLERGY, Issue 1 2007
B. Bohle
Patients with birch pollen allergy frequently develop hypersensitivity reactions to certain foods, e.g. apples, celery, carrots and hazelnuts. These reactions are mainly caused by IgE-antibodies specific for the major birch pollen allergen, Bet v 1, which cross-react with homologous proteins in these foods. Analyzing the T-cell response to Bet v 1-related food allergens revealed that these dietary proteins contain several distinct T-cell epitopes and activate Bet v 1-specific T cells to proliferate and produce cytokines. Several of these cross-reactive T-cell epitopes were not destroyed by simulated gastrointestinal digestion of food allergens and stimulated Bet v 1-specific T cells despite nonreactivity with IgE antibodies. Similarly, cooked food allergens did not elicit IgE-mediated symptoms (oral allergy syndromes) but caused T-cell-mediated late-phase reactions (deterioration of atopic eczema) in birch pollen-allergic patients with atopic dermatitis because thermal processing affected their conformational structure and not the primary amino acid sequence. Thus, T-cell cross-reactivity between Bet v 1 and related food allergens occurs independently of IgE-cross-reactivity in vitro and in vivo. We speculate that symptom-free consumption of pollen-related food allergens may have implications for the pollen-specific immune response of allergic individuals. [source]


Nasal challenges with recombinant derivatives of the major birch pollen allergen Bet v 1 induce fewer symptoms and lower mediator release than rBet v 1 wild-type in patients with allergic rhinitis

CLINICAL & EXPERIMENTAL ALLERGY, Issue 10 2002
M. Van Hage-Hamsten
Summary Background Genetic engineering of the major birch pollen allergen (Bet v 1) has led to the generation of recombinant Bet v 1 derivatives with markedly reduced IgE-binding capacity, but with retained T cell activating ability. Objective To compare the mucosal reactivity to rBet v 1 derivatives with rBet v 1 wild-type as basis for new therapeutic strategies for birch pollen allergy based on mucosal tolerance induction. Methods Outside the pollen season, 10 patients with birch pollen allergic rhinitis and mild asthma underwent four nasal challenge-sessions in a randomized, double-blind, and cross-over design, employing increasing doses of rBet v 1 fragment mix, rBet v 1 trimer, rBet v 1 wild-type and diluent (albumin). Nasal lavage fluids (NAL) were collected before the challenge-series as well as 10 min, 4 and 24 h thereafter. Nasal lavage fluid levels of tryptase as well as EPO and ECP were measured as indices of mast cell and eosinophil activity, respectively. Results All 10 patients tolerated the highest accumulated dose, 8.124 µg, when challenged with rBet v 1 trimer, eight with rBet v 1 fragments compared to one when challenged with rBet v 1 wild-type. No late phase reactions were observed. The change in tryptase levels (pre-challenge vs. 10 min) was significantly lower after challenges with rBet v 1 trimer and rBet v 1 fragments than with rBet v 1 wild-type. The change in EPO/ECP concentration pre-challenge versus 4 h post-challenge was lower for rBet v 1 trimer and the change was significantly lower when pre-challenge versus 24 h post-challenge to rBet v 1 fragments and rBet v 1 wild-type was examined. Conclusion The derivatives induced significantly fewer symptoms and lower mast cell and eosinophil activation than rBet v 1 wild-type upon application to the nasal mucosa. They could in the future be candidates for immunotherapy based on mucosal tolerance induction. [source]