Maximal Power (maximal + power)

Distribution by Scientific Domains


Selected Abstracts


Respiratory muscle performance with stretch-shortening cycle manoeuvres: maximal inspiratory pressure,flow curves

ACTA PHYSIOLOGICA, Issue 3 2005
G. E. Tzelepis
Abstract Aim:, To test the hypothesis that the maximal inspiratory muscle (IM) performance, as assessed by the maximal IM pressure,flow relationship, is enhanced with the stretch-shortening cycle (SSC). Methods:, Maximal inspiratory flow,pressure curves were measured in 12 healthy volunteers (35 ± 6 years) during maximal single efforts through a range of graded resistors (4-, 6-, and 8-mm diameter orifices), against an occluded airway, and with a minimal load (wide-open resistor). Maximal inspiratory efforts were initiated at a volume near residual lung volume (RV). The subjects exhaled to RV using slow (S) or fast (F) manoeuvres. With the S manoeuvre, they exhaled slowly to RV and held the breath at RV for about 4 s prior to maximal inspiration. With the F manoeuvre, they exhaled rapidly to RV and immediately inhaled maximally without a post-expiratory hold; a strategy designed to enhance inspiratory pressure via the SSC. Results:, The maximal inspiratory pressure,flow relationship was linear with the S and F manoeuvres (r2 = 0.88 for S and r2 = 0.88 for F manoeuvre, P < 0.0005 in all subjects). With the F manoeuvre, the pressure,flow relationship shifted to the right in a parallel fashion and the calculated maximal power increased by approximately 10% (P < 0.05) over that calculated with the S manoeuvre. Conclusion:, The maximal inspiratory pressure,flow capacity can be enhanced with SSC manoeuvres in a manner analogous to increases in the force,velocity relationship with SSC reported for skeletal muscles. [source]


Pressure-independent cardiac effects of angiotensin II in pigs

ACTA PHYSIOLOGICA, Issue 2 2004
M. Broomé
Abstract Background:, Angiotensin II (Ang II) is a potent vasoconstrictor with an important role in the development of cardiovascular disease. Earlier results have shown a positive acute inotropic effect of Ang II in anaesthetized pigs together with significant vasoconstriction. This investigation was designed to study cardiac effects of Ang II, when blood pressure was maintained constant by experimental means. Methods:, Ang II (200 ,g h,1) was infused in anaesthetized pigs (n = 10) at two different arterial blood pressures, the first determined by the effects of Ang II alone, and the second maintained at baseline blood pressure with nitroprusside. Cardiac systolic and diastolic function was evaluated by analysis of left ventricular pressure,volume relationships. Results:, Heart rate, end-systolic elastance (Ees) and pre-load adjusted maximal power (PWRmax EDV,2) increased at both blood pressure levels, although less when blood pressure was kept constant with nitroprusside. The time constant for isovolumetric relaxation (,1/2) was prolonged with Ang II alone and shortened with Ang II infused together with nitroprusside. Conclusion:, Ang II infusion in the pig has inotropic and chronotropic properties independent of arterial blood pressure levels, although the effects seem to be blunted by pharmacological actions of the nitric oxide donor nitroprusside. [source]


Bradykinesia, muscle weakness and reduced muscle power in Parkinson's disease,

MOVEMENT DISORDERS, Issue 9 2009
Natalie E. Allen BAppSc (Physio) Hons
Abstract Muscle power (force × velocity) could clarify the relationship between weakness and bradykinesia in Parkinson's disease (PD). The aims of this study were to determine if patients with PD were weaker and/or less powerful in their leg extensor muscles than a neurologically normal control group and to determine the relative contributions of force and movement velocity/bradykinesia to muscle power in PD. Forty patients with PD and 40 controls were assessed. Strength in Newtons (N) was measured as the heaviest load the participant could lift. Power in Watts (W) was measured by having the participant perform lifts as fast as possible. The PD group were 172 N weaker (95% CI 28,315) and 124 W less powerful at peak power (95% CI 32,216) than controls. However, velocity at maximal power was only reduced compared with controls when lifting light to medium loads. When lifting heavy loads bradykinesia was no longer apparent in the PD group. These results suggest that reduced muscle power in PD at lighter loads arises from weakness and bradykinesia combined, but at heavier loads arises only from weakness. The absence of bradykinesia in the PD group when lifting heavy loads warrants further investigation. © 2009 Movement Disorder Society [source]


Lower ability to oxidize lipids in adult patients with growth hormone (GH) deficiency: reversal under GH treatment

CLINICAL ENDOCRINOLOGY, Issue 4 2006
F. Brandou
Summary Background, The aim of the study was to characterize lipid oxidation at exercise in adults with growth hormone deficiency (GHD) and to evaluate the effect of 6 and 12 months of GH replacement therapy on substrate carbohydrate (CHO) and lipid utilization at exercise. Patients and measurements, Twenty-five patients with GHD and 40 matched controls participated in the study. Ten of the 25 GH-deficient patients were treated with recombinant GH for 12 months. Anthropometric measurements and exercise calorimetry were performed before and after treatment. Maximal fat oxidation and the crossover point [that is the percentage of the theoretical maximal power (Wmax th) where CHO become the predominant fuel used for oxidation] were determined. Results and conclusion, The GH-deficient patients exhibited a highly significant shift in the balance of substrate oxidation during exercise, towards a decrease in fat oxidation, and a shift towards lower intensities of the crossover (52 ± 5·5%vs. 72·6 ± 6·6% of Wmax th, P < 0·03) and maximal fat oxidation (131·04 ± 14 vs. 234·4 ± 30·1 mg/min, P < 0·03) in the GHD and control groups, respectively. However, GH treatment at 6 and 12 months partially reversed this defect, resulting in an increase (+83%, P < 0·001) in the maximal ability to oxidize fat during exercise. These findings are consistent with the hypothesis that a lack of GH reduces the ability to oxidize lipids during exercise and that GH treatment restores this muscular metabolic property. [source]