Maximal Plasma Concentration (maximal + plasma_concentration)

Distribution by Scientific Domains


Selected Abstracts


Cetirizine in horses: pharmacokinetics and effect of ivermectin pretreatment

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 3 2007
L. OLSÉN
The pharmacokinetics of the histamine H1 -antagonist cetirizine and the effects of pretreatment with the antiparasitic macrocyclic lactone ivermectin on the pharmacokinetics of cetirizine were studied in horses. After oral administration of cetirizine at 0.2 mg/kg bw, the mean terminal half-life was 3.4 h (range 2.9,3.7 h) and the maximal plasma concentration 132 ng/mL (101,196 ng/mL). The time to reach maximal plasma concentration was 0.7 h (0.5,0.8 h). Ivermectin (0.2 mg/kg bw) given orally 1.5 h before cetirizine did not affect its pharmacokinetics. However, ivermectin pretreatment 12 h before cetirizine increased the area under the plasma concentration,time curve by 60%. The maximal plasma concentration, terminal half-life and mean residence time also increased significantly following the 12 h pretreatment. Ivermectin is an inhibitor of P-glycoprotein, which is a major drug efflux transporter in cellular membranes at various sites. The elevated plasma levels of cetirizine following the pretreatment with ivermectin may mainly be due to decreased renal secretion, related to inhibition of the P-glycoprotein in the proximal tubular cells of the kidney. The pharmacokinetic properties of cetirizine have characteristics which are suitable for an antihistamine, and this substance may be a useful drug in horses. [source]


Bioequivalence of four preparations of enrofloxacin in poultry

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2001
L. H. Sumano
In various parts of the world, many 10% enrofloxacin commercial preparations for water medication of chicken are being employed. To avoid the development of bacterial resistance to this agent, the original trademark and similar preparations must be bioequivalent. To assess whether or not bioequivalence exists among the pioneer vs. three commercial preparations of enrofloxacin, a controlled pharmacokinetic study was conducted. The following variables were compared: maximal plasma concentration (Cpeak), time to Cpeak, bioavailability (expressed as the area under the concentration vs. time curve), elimination half-life, and the shapes of the respective time-serum concentrations of enrofloxacin profiles. Results indicate that all three similar commercial preparations had lower Cpeak values than the reference formulation, being 39.62 to 67.77% of the corresponding Cpeak reference. Additionally, bioavailability of enrofloxacin in the pioneer product was statistically higher (P < 0.05). Based upon these results, we conclude that although all preparations were formulated as water-soluble products, bioequivalence studies are mandatory for the analogue formulations to ensure product comparability. Lack of product bioequivalence could facilitate the development of bacterial resistance and limit the useful life span of the product. [source]


Strategies to improve efficacy and safety of a novel class of antiviral hyper-activation-limiting therapeutic agents: the VS411 model HIV/AIDS

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2010
D De Forni
BACKGROUND AND PURPOSE Antiviral hyper-activation-limiting therapeutic agents (AV-HALTs) are a novel experimental drug class designed to both decrease viral replication and down-regulate excessive immune system activation for the treatment of chronic infections, including human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome. VS411, a first-in-class AV-HALT, is a single-dosage form combining didanosine (ddI, 400 mg), an antiviral (AV), and hydroxyurea (HU, 600 mg), a cytostatic agent, designed to provide a slow release of ddI to reduce its maximal plasma concentration (Cmax) to potentially reduce toxicity while maintaining total daily exposure (AUC) and the AV activity. EXPERIMENTAL APPROACH This was a pilot phase I, open-label, randomized, single-dose, four-way crossover trial to investigate the fasted and non-fasted residual variance of AUC, Cmax and the oral bioavailability of ddI and HU, co-formulated as VS411, and administered as two different fixed-dose combination formulations compared to commercially available ddI (Videx EC) and HU (Hydrea) when given simultaneously. KEY RESULTS Formulation VS411-2 had a favourable safety profile, displayed a clear trend for lower ddI Cmax (P= 0.0603) compared to Videx EC, and the 90% confidence intervals around the least square means ratio of Cmax did not include 100%. ddI AUC, was not significantly decreased compared to Videx EC. HU pharmacokinetic parameters were essentially identical to Hydrea, although there was a decrease in HU exposure under fed versus fasted conditions. CONCLUSIONS AND IMPLICATIONS A phase IIa trial utilizing VS411-2 formulation has been fielded to identify the optimal doses of HU plus ddI as an AV-HALT for the treatment of HIV disease. [source]


Pharmacokinetics of cysteamine bitartrate following gastrointestinal infusion

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 1 2007
Meredith C. Fidler
Aims Although cysteamine was first used in the treatment of cystinosis in 1976 and approved by the FDA as cysteamine bitartrate (CystagonÔ) in 1994, surprisingly little pharmacological data are available for this compound. Cysteamine and its related drugs are currently being evaluated for the treatment of Huntington's and Parkinson's disease. The aim of te study was to understand the pharmacokinetics of cysteamine bitartrate following gastrointestinal infusion. Method Cysteamine bitartrate was delivered through a naso-enteric catheter into the stomach (n = 8), small intestine (n = 8) and caecum (n = 4) of normal subjects. Plasma cysteamine concentrations were determined using LC-MS/MS. Results The rate and extent of drug absorption were assessed by comparing AUC(0, ,), Cmax and tmax, among the gastrointestinal infusion sites. Total cysteamine exposure, expressed as area under the curve (AUC(0, ,)) was greatest when the drug was infused into the small intestine (4331.3 ± 1907.6 min × µm) followed by stomach (3901.9 ± 1591.9 min × µm) and caecum (3141.4 ± 1627.6 min × µm). Cysteamine infusion into the small intestine resulted in the most rapid rise to maximal plasma concentrations (tmax = 21 ± 0.56 min); tmax was delayed to 50 ± 26 min and 64 ± 26 min after gastric and caecal infusion, respectively. The maximum cysteamine plasma concentration (Cmax) was reached after infusion of the drug into the small intestine (51 ± 21 µm), which was higher than plasma Cmax concentrations after gastric (39 ± 16 µm) and caecal infusion (23 ± 15 µm). Conclusions The pharmacokinetic data generated help extend our understanding of cysteamine. [source]