Maximal Number (maximal + number)

Distribution by Scientific Domains


Selected Abstracts


Habitat size and number in multi-habitat landscapes: a model approach based on species-area curves

ECOGRAPHY, Issue 1 2002
Even Tjřrve
This paper discusses species diversity in simple multi-habitat environments. Its main purpose is to present simple mathematical and graphical models on how landscape patterns affect species numbers. The idea is to build models of species diversity in multi-habitat landscapes by combining species-area curves for different habitats. Predictions are made about how variables such as species richness and species overlap between habitats influence the proportion of the total landscape each habitat should constitute, and how many habitats it should be divided into in order to be able to sustain the maximal number of species. Habitat size and numbers are the only factors discussed here, not habitat spatial patterns. Among the predictions are: 1) where there are differences in species diversity between habitats, optimal landscape patterns contain larger proportions of species rich habitats. 2) Species overlap between habitats shifts the optimum further towards larger proportions of species rich habitat types. 3) Species overlap also shifts the optimum towards fewer habitat types. 4) Species diversity in landscapes with large species overlap is more resistant to changes in landscape (or reserve) size. This type of model approach can produce theories useful to nature and landscape management in general, and the design of nature reserves and national parks in particular. [source]


Resistance to Propagation of Amygdaloid Kindling Seizures in Rats with Genetic Absence Epilepsy

EPILEPSIA, Issue 10 2002
Esat E, kazan
Summary: ,Purpose: The existence of absence epilepsy and temporal partial seizure pattern in the same patient is an uncommon state. In the present study, we aimed to evaluate whether the process of kindling as a model of complex partial seizures with secondary generalization is altered in rats with genetic absence epilepsy. Methods: Six- to 12-month-old nonepileptic control Wistar rats and genetic absence epileptic rats from Strasbourg (GAERS) were used in the experiments. One week before the experiments, bilateral stimulation and recording electrodes were implanted stereotaxically into the basolateral amygdala and cortex, respectively. Animals were stimulated at their afterdischarge threshold current twice daily for the process of kindling and accepted as fully kindled after the occurrence of five grade 5 seizures. Bilateral EEGs from amygdala and cortex were recorded continuously during 20 min before and 40 min after each stimulus. Results: All control Wistar rats were fully kindled after stimulus 12 to 15. Although the maximal number of stimulations had been applied, GAERS remained at stage 2, and no motor seizures were observed. The afterdischarge duration in bilateral amygdala and the cortex after the kindling stimulus was shorter in GAERS when compared with control rats. Conclusions: Occurrence of only grade 2 seizures and no observation of grade 3,5 seizures in GAERS with the maximal number of stimulations would suggest that the generalized absence seizures may be the reason of the resistance in the secondary generalization of limbic seizures during amygdala kindling. [source]


Kinetics of self-condensing vinyl hyperbranched polymerization in three-dimensional space

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2008
Xuehao He
Abstract Self-condensing vinyl hyperbranched polymerization (SCVP) with A-B* type monomer is simulated applying Monte Carlo method using 3d bond fluctuation lattice model in three-dimensional space. The kinetics of SCVP with zero active energy of reaction is studied in detail. It is found that the maximal number,average and weight,average polymerization degrees and the maximal molecular weight distribution, at varying the initial monomer concentration and double bond conversion, are about 52, 190, and 3.93, respectively, which are much lower than theoretical values. The maximal average fraction of branching points is about 0.27, obtained at full conversion at the initial monomer concentration of 0.75. The simulation demonstrated the importance of steric effects and intramolecular cyclization in self-condensing vinyl hyperbranched polymerization. The results are also compared with experiments qualitatively and a good agreement is achieved. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4486,4494, 2008 [source]


Operant Self-Administration of Ethanol in Sardinian Alcohol-Preferring Rats

ALCOHOLISM, Issue 11 2002
Giovanni Vacca
Background "Work" for ethanol, that is, the ability of a laboratory animal to press a lever to gain access to ethanol, has been proposed as (a) a requirement for definition of an animal model of alcoholism and (b) a measure of ethanol-reinforcing properties. The present study evaluated oral self-administration of ethanol under an operant (lever pressing) procedure in selectively bred Sardinian alcohol-preferring (sP) and alcohol-nonpreferring (sNP) rats. Methods Rats from both lines were initiated to self-administer 10% ethanol, on a fixed ratio 1 schedule and in daily 30 min sessions, by using the Samson sucrose fading procedure. Subsequently, rats were exposed to increasing concentrations of ethanol up to 30% on a fixed ratio 4 schedule. Finally, the extinction responding for ethanol, defined as the maximal number of lever responses reached by each rat in the absence of ethanol reinforcement, was determined. Results The results indicated that sP rats acquired and maintained lever pressing for ethanol, self-administering mean amounts of ethanol in the range of 0.6 to 1.1 g/kg/session, which gave rise to mean blood ethanol levels in the 30 to 45 mg% range. Extinction responding for ethanol in sP rats averaged 73. In contrast, once sucrose was faded out, sNP rats displayed minimal levels of responding for ethanol, and extinction responding averaged 6. Conclusions The results of the present study extend to the sP/sNP rat lines the finding that ethanol can be established as a reinforcer in selectively bred alcohol-preferring rats, whereas it has modest, if any, reinforcing properties in alcohol-nonpreferring rats. [source]


The function of mate choice in sticklebacks: optimizing Mhc genetics,

JOURNAL OF FISH BIOLOGY, Issue 2003
M. Milinski
Sexual reproduction is an evolutionary ,puzzle'. A sexual female ,throws away' half of her genes (during meiosis), and ,fills up' what she lost with genes from a male. Thus, sexual reproduction can only be successful if the offspring with the new mixture of genes should be more than twice as fit as if she had just made a copy of herself. A challenging hypothesis assumes that infectious diseases select for females that reshuffle the immune genes for their offspring in each generation. The required increase in quality could be achieved by females selectively ,smelling out' suitable immune-genes (i.e. Mhc alleles) in potential partners, which, in combination with the female's genes, offer optimal resistance against quickly changing infectious diseases. It was found that most three spined sticklebacks Gasterosteus aculeatus in natural populations around Plön, Germany, had intermediate instead of maximal numbers of different Mhc class IIB alleles. Furthermore, fish with an intermediate number of different Mhc alleles were infected with the lowest number of both parasite species and parasites per species. This suggests that Mhc heterozygosity was optimized instead of maximized. Can this immunogenetic optimum be achieved through female choice? In a flow channel design that allowed the detection of olfactory signals only, it was found that female three-spined sticklebacks that were ready to spawn preferred males as mates that in combination with their Mhc alleles would allow the production of offspring with the optimal number of Mhc alleles. Thus, mate choice in three-spined sticklebacks could have the two-fold advantage over asexual reproduction that is required to maintain sexual reproduction. The interaction of olfactory with visual signals in three-spined stickleback mate choice is discussed. The three-spined stickleback is a suitable model organism for studying the evolution of sexual reproduction in relation to optimizing offspring immune genetics although other fishes may be as suitable. [source]