Maximal Amplitude (maximal + amplitude)

Distribution by Scientific Domains


Selected Abstracts


Involvement of the human frontal eye field and multiple parietal areas in covert visual selection during conjunction search

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2000
Tobias Donner
Abstract Searching for a target object in a cluttered visual scene requires active visual attention if the target differs from distractors not by elementary visual features but rather by a feature conjunction. We used functional magnetic resonance imaging (fMRI) in human subjects to investigate the functional neuroanatomy of attentional mechanisms employed during conjunction search. In the experimental condition, subjects searched for a target defined by a conjunction of colour and orientation. In the baseline condition, subjects searched for a uniquely coloured target, regardless of its orientation. Eye movement recordings outside the scanner verified subjects' ability to maintain fixation during search. Reaction times indicated that the experimental condition was attentionally more demanding than the baseline condition. Differential activations between conditions were therefore ascribed to top-down modulation of neural activity. The frontal eye field, the ventral precentral sulcus and the following posterior parietal regions were consistently activated: (i) the postcentral sulcus; (ii) the posterior; and (iii) the anterior part of the intraparietal sulcus; and (iv) the junction of the intraparietal with the transverse occipital sulcus. Parietal regions were spatially distinct and displayed differential amplitudes of signal increase with a maximal amplitude in the posterior intraparietal sulcus. Less consistent activation was found in the lateral fusiform gyrus. These results suggest an involvement of the human frontal eye field in covert visual selection of potential targets during search. These results also provide evidence for a subdivision of posterior parietal cortex in multiple areas participating in covert visual selection, with a major contribution of the posterior intraparietal sulcus. [source]


Influence of factor IX on overall plasma coagulability and fibrinolytic potential as measured by global assay: monitoring in haemophilia B

HAEMOPHILIA, Issue 1 2008
N. A. GOLDENBERG
Summary., We sought to determine the influence of factor IX (FIX) deficiency upon overall coagulative and fibrinolytic capacities in plasma using the clot formation and lysis (CloFAL) assay, and to investigate the role of this global assay as an adjunctive monitoring tool in haemophilia B. CloFAL assay parameters were measured in vitro in platelet-poor plasma in relation to FIX activity and antigen (FIX:Ag), and were determined ex vivo among FIX-deficient patients (n = 41) in comparison to healthy individuals (n = 48). Supplementation of FIX-deficient plasma with FIX in vitro demonstrated a non-linear concentration dependence of FIX upon overall plasma coagulability. Ex vivo, coagulability was significantly decreased in FIX-deficient vs. healthy subjects among adults [median coagulation index (CI): 4% vs. 104% respectively; P < 0.001] and children (median CI: 9% vs. 63%; P < 0.001). Fibrinolytic capacity was increased in adult FIX-deficient vs. healthy subjects (median fibrinolytic index: 216% vs. 125%, respectively, P < 0.001), and was supported by a trend in shortened euglobulin lysis time (ELT). Severe haemophilia B patients showed heterogeneity in aberrant CloFAL assay waveforms, influenced partly by FIX:Ag levels. Patients with relatively preserved FIX:Ag (i.e. dysfunctional FIX) exhibited a shorter time to maximal amplitude in clot formation than those with type I deficiency. During patient treatment monitoring, markedly hypocoagulable CloFAL assay waveforms normalized following 100% correction with infused FIX. The CloFAL global assay detects FIX deficiency, demonstrates differences in coagulability between dysfunctional FIX and type I deficiency, and appears useful as an adjunctive test to routine FIX measurement in monitoring haemophilia B treatment. [source]


Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach

HUMAN BRAIN MAPPING, Issue 3 2006
Douglas Cheyne
Abstract We describe a novel spatial filtering approach to the localization of cortical activity accompanying voluntary movements. The synthetic aperture magnetometry (SAM) minimum-variance beamformer algorithm was used to compute spatial filters three-dimensionally over the entire brain from single trial neuromagnetic recordings of subjects performing self-paced index finger movements. Images of instantaneous source power ("event-related SAM") computed at selected latencies revealed activation of multiple cortical motor areas prior to and following left and right index finger movements in individual subjects, even in the presence of low-frequency noise (e.g., eye movements). A slow premovement motor field (MF) reaching maximal amplitude ,50 ms prior to movement onset was localized to the hand area of contralateral precentral gyrus, followed by activity in the contralateral postcentral gyrus at 40 ms, corresponding to the first movement-evoked field (MEFI). A novel finding was a second activation of the precentral gyrus at a latency of ,150 ms, corresponding to the second movement-evoked field (MEFII). Group averaging of spatially normalized images indicated additional premovement activity in the ipsilateral precentral gyrus and the left inferior parietal cortex for both left and right finger movements. Weaker activations were also observed in bilateral premotor areas and the supplementary motor area. These results show that event-related beamforming provides a robust method for studying complex patterns of time-locked cortical activity accompanying voluntary movements, and offers a new approach for the localization of multiple cortical sources derived from neuromagnetic recordings in single subject and group data. Hum. Brain Mapping 2005. © 2005 Wiley-Liss, Inc. [source]


Spontaneous Transition of 2:1 Atrioventricular Block to 1:1 Atrioventricular Conduction During Atrioventricular Nodal Reentrant Tachycardia:

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 12 2003
Evidence Supporting the Intra-Hisian or Infra-Hisian Area as the Site of Block
Introduction: The incidence of spontaneous transition of 2:1 AV block to 1:1 AV conduction during AV nodal reentrant tachycardia has not been well reported. Among previous studies, controversy also existed about the site of the 2:1 AV block during AV nodal reentrant tachycardia. Methods and Results: In patients with 2:1 AV block during AV nodal reentrant tachycardia, the incidence of spontaneous transition of 2:1 AV block to 1:1 AV conduction and change of electrophysiologic properties during spontaneous transition were analyzed. Among the 20 patients with 2:1 AV block during AV nodal reentrant tachycardia, a His-bundle potential was absent in blocked beats during 2:1 AV block in 8 patients, and the maximal amplitude of the His-bundle potential in the blocked beats was the same as that in the conducted beats in 4 patients and was significantly smaller than that in the conducted beats in 8 patients (0.49 ± 0.25 mV vs 0.16 ± 0.07 mV, P = 0.007). Spontaneous transition of 2:1 AV block to 1:1 AV conduction occurred in 15 (75%) of 20 patients with 2:1 AV block during AV nodal reentrant tachycardia. Spontaneous transition of 2:1 AV block to 1:1 AV conduction was associated with transient right and/or left bundle branch block. The 1:1 AV conduction with transient bundle branch block was associated with significant His-ventricular (HV) interval prolongation (66 ± 19 ms) compared with 2:1 AV block (44 ± 6 ms, P < 0.01) and 1:1 AV conduction without bundle branch block (43 ± 6 ms, P < 0.01). Conclusion: The 2:1 AV block during AV nodal reentrant tachycardia is functional; the level of block is demonstrated to be within or below the His bundle in a majority of patients with 2:1 AV block during AV nodal reentrant tachycardia, and a minority are possibly high in the junction between the AV node and His bundle. (J Cardiovasc Electrophysiol, Vol. 14, pp. 1337-1341, December 2003) [source]


1,8-Cineole induces relaxation in rat and guinea-pig airway smooth muscle

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2009
Nilberto Robson Falcão Nascimento
Abstract Objectives 1,8-Cineole is a monoterpene with anti-inflammatory, vascular and intestinal smooth muscle relaxant activity. We have evaluated the potential bronchodilatatory activity of this compound. Methods 1,8-Cineole was tested against carbachol, histamine, K+ 80 mM and ovalbumin-induced bronchial contractions in Wistar rat or guinea-pig tissues. Some of the guinea-pigs had been previously sensitized with an intramuscular injection of 5% (w/v) ovalbumin/saline solution. Control animals received 0.3 ml saline. In separate experimental groups the response to 1,8-cineole (1,30 mg/kg), phenoterol (0.05,5 mg/kg) or vehicle (0.3% Tween in saline) was studied. Key findings 1,8-Cineole decreased, in vivo, rat bronchial resistance with similar efficacy as phenoterol (66.7 ± 3.2% vs 72.1 ± 5.3%). On the other hand, the maximal relaxant response to 1,8-cineole in carbachol-precontracted rat tracheas was 85.5 ± 5.7% (IC50 = 408.9 (328,5196) ,g/ml) compared with 80.2 ± 4.8% (IC50 = 5.1 (4.3,6.1) ,g/ml) with phenoterol. The addition of 1,8-cineole to guinea-pig tracheal rings tonically contracted with K+ 80 mM induced a concentration-related relaxation. The maximal relaxation elicited by 1,8-cineole was 113.6 ± 11.7% (IC50 127.0 (115.9,139.2) ,g/ml) compared with 129.7 ± 14.6% (IC50 0.13 (0.12,0.14) ,g/ml) achieved after phenoterol administration. In addition, the incubation of tracheal rings with 1,8-cineole (100, 300 or 1000 ,g/ml), 15 min before inducing phasic contractions with K+ 80 mM, decreased the maximal amplitude of the contraction by 31.6 ± 4.6, 75.7 ± 2.7 and 92.2 ± 1.5%, respectively. In another set of experiments, neither the maximal response nor the IC50 for the 1,8-cineole-induced relaxation were different between normal and ovalbumin-sensitized tissues. Moreover, the relaxation of bronchial rings contracted after exposure to 1 ,g/ml ovalbumin occurred at a faster rate in rings pre-incubated with 1,8-cineole when compared with rings pre-incubated with vehicle only (Tween 0.3%). Therefore, in the first minute after the antigen challenge, the tracheal tissue relaxed after the peak contraction by 6.5, 21.4 (P < 0.05 vs control) and 66.9% (P < 0.05 vs control) in the presence of 100, 300 or 1000 ,g/ml 1,8-cineole, respectively. Conclusions 1,8-Cineole relaxed rat and guinea-pig (nonsensitized and ovalbumin-sensitized) airway smooth muscle by a nonspecific mechanism. [source]


Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study

THE JOURNAL OF PHYSIOLOGY, Issue 1 2006
Jacopo Magistretti
Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na+ currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (INaT) was always present and had the properties of a typical fast-activating/inactivating Na+ current. In addition to INaT, robust persistent (INaP) and resurgent (INaR) Na+ currents were observed. INaP peaked at ,,40 mV, showed half-maximal activation at ,,55 mV, and its maximal amplitude was about 1.5% of that of INaT. INaR was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate INaT, and showed voltage- and time-dependent activation and voltage-dependent decay kinetics. The conductance underlying INaR showed a bell-shaped voltage dependence, with peak at ,35 mV. A significant correlation was found between GC INaR and INaT peak amplitudes; however, GCs expressing INaT of similar size showed marked variability in terms of INaR amplitude, and in a fraction of cells INaR was undetectable. INaT, INaP and INaR could be accounted for by a 13-state kinetic scheme comprising closed, open, inactivated and blocked states. Current-clamp experiments carried out to identify possible functional correlates of INaP and/or INaR revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with INaR playing a role in their generation. Computer modelling showed that INaR promotes DAP generation and enhances high-frequency firing, whereas INaP boosts near-threshold firing activity. Our findings suggest that special properties of voltage-dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially important consequences for cerebellar information transfer and computation. [source]


White Blood Cell Count and the Occurrence of Silent Ischemia after Myocardial Infarction

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 1 2003
gorzata Kurpesa
Background: Inflammation plays a role in the pathogenesis of atherosclerosis. Attempts are made to use markers of inflammation as prognostic factors in coronary artery disease and acute coronary syndromes. The correlation between inflammation and silent postinfarction ischemia is unknown. Methods: The study population consists of 104 asymptomatic patients who had uncomplicated Q-wave myocardial infarction within 6 months prior to the enrollment. After the white blood cell (WBC) count was assessed, the population was divided into two groups: group I comprising 48 patients with WBC , 7.0 × 103/,l and group II comprising 56 patients with WBC > 7.0 × 103/,l. Twenty-four-hour Holter monitoring was performed to detect the presence of silent ischemia. Results: Eighty-eight silent ischemic episodes were recorded. Ischemia on Holter monitoring was detected in 47 patients (84%) from group II and in five patients (9%) in group I (P < 0.01). We have found a significant positive correlation between WBC count and the number of ischemic episodes (r = 0.25), their maximal amplitude (r = 0.39), duration (r = 0.34), and total ischemic burden (r = 0.36). In multivariate analysis leucocytosis proved to be the only parameter independently correlated with the presence of silent ischemia. Conclusion: Postinfarction asymptomatic patients with increased WBC count are more likely to have residual ischemia. [source]