Mammary Cells (mammary + cell)

Distribution by Scientific Domains


Selected Abstracts


Environmental carcinogens and p53 tumor-suppressor gene interactions in a transgenic mouse model for mammary carcinogenesis

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2002
Daniel Medina
Abstract Mouse mammary tumorigenesis is greatly influenced by a variety of exogenous agents, such as MMTV, chemical carcinogens (i.e., polycyclic aromatic hydrocarbons), and radiation, as well as by endogenous/physiological factors, such as steroid hormones, tumor-suppressor genes (i.e., Brca1/2,p53), and gene products of modifier genes. In the mouse model, the most frequently used chemical carcinogen has been 7,12-dimethylbenz[a]anthracene (DMBA), which activates the Ha- ras gene but does not alter the p53 tumor-suppressor gene. However, on an existing background of p53 gene alteration, low doses of DMBA are strongly cocarcinogenic. Using a transgenic model system, in which the p53 gene was deleted in the mammary gland, we examined the carcinogenic effects of a variety of external agents and internal factors given at either low doses or physiological doses. These agents/factors included DMBA, ,-radiation, Brca2 heterozygosity, and steroid hormones. All agents/factors increased the tumorigenic response of the p53 null mammary cells, even under conditions where no tumorigenic response was observed in the p53 wildtype mammary cell. The strongest cocarcinogenic effect was observed with the steroid hormone progesterone. The majority of tumors were highly aneuploid and composed of nuclear igh-grade cells. The mechanism for the aneuploidy and secondary events associated with high tumorigenicity were examined using array technology. These results demonstrate that, on a background of underlying genetic instability, very low doses of environmental mutagens and mitogens can produce strong cocarcinogenic effects. Environ. Mol. Mutagen. 39:178,183, 2002. © 2002 Wiley-Liss, Inc. [source]


Expression of heregulin by mouse mammary tumor cells: Role in activation of ErbB receptors,

MOLECULAR CARCINOGENESIS, Issue 7 2006
M. Schmitt
Abstract The inappropriate activation of one or more members of the ErbB family of receptor tyrosine kinases [ErbB-1 (EGFR), ErbB-2, ErbB-3, ErbB-4] has been linked with oncogenesis. ErbB-2 is frequently coexpressed with ErbB-3 in breast cancer cells and in the presence of the ligand heregulin (HRG) the ErbB-2/ErbB-3 receptors form a signaling heterodimer that can affect cell proliferation and apoptosis. The major goal of the present study was to determine whether endogenous HRG causes autocrine/paracrine activation of ErbB-2/ErbB-3 and contributes to the proliferation of mammary epithelial tumor cells. Tyrosine-phosphorylated (activated) ErbB-2 and ErbB-3 receptors were detected in the majority of extracts from tumors that had formed spontaneously or as a result of oncogene expression. HRG-1 transcripts and protein were found in the epithelial cells of most of these mouse mammary tumors. Various mouse mammary cell lines also contained activated ErbB-2/ErbB-3 and HRG transcripts. A ,50 kDa C-terminal fragment of pro-HRG was detected, which indicates that the HRG-1 precursor is readily processed by these cells. It is likely that the secreted mature HRG activated the ErbB-2/3 receptors. Addition of an antiserum against HRG to the mammary epithelial tumor cell line TM-6 reduced ErbB-3 Tyr-phosphorylation. Treatment with HRG-1 siRNA oligonucleotides or infection with a retroviral construct to stably express HRG siRNA effectively reduced HRG protein levels, ErbB-2/ErbB-3 activation, and the rate of proliferation, which could be reversed by the addition of HRG. The cumulative findings from these experiments show that coexpression of the HRG ligand contributes to activation of ErbB-2/Erb-3 in mouse mammary tumor cells in an autocrine or paracrine fashion. Published 2006 Wiley-Liss, Inc. [source]


Environmental carcinogens and p53 tumor-suppressor gene interactions in a transgenic mouse model for mammary carcinogenesis

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2002
Daniel Medina
Abstract Mouse mammary tumorigenesis is greatly influenced by a variety of exogenous agents, such as MMTV, chemical carcinogens (i.e., polycyclic aromatic hydrocarbons), and radiation, as well as by endogenous/physiological factors, such as steroid hormones, tumor-suppressor genes (i.e., Brca1/2,p53), and gene products of modifier genes. In the mouse model, the most frequently used chemical carcinogen has been 7,12-dimethylbenz[a]anthracene (DMBA), which activates the Ha- ras gene but does not alter the p53 tumor-suppressor gene. However, on an existing background of p53 gene alteration, low doses of DMBA are strongly cocarcinogenic. Using a transgenic model system, in which the p53 gene was deleted in the mammary gland, we examined the carcinogenic effects of a variety of external agents and internal factors given at either low doses or physiological doses. These agents/factors included DMBA, ,-radiation, Brca2 heterozygosity, and steroid hormones. All agents/factors increased the tumorigenic response of the p53 null mammary cells, even under conditions where no tumorigenic response was observed in the p53 wildtype mammary cell. The strongest cocarcinogenic effect was observed with the steroid hormone progesterone. The majority of tumors were highly aneuploid and composed of nuclear igh-grade cells. The mechanism for the aneuploidy and secondary events associated with high tumorigenicity were examined using array technology. These results demonstrate that, on a background of underlying genetic instability, very low doses of environmental mutagens and mitogens can produce strong cocarcinogenic effects. Environ. Mol. Mutagen. 39:178,183, 2002. © 2002 Wiley-Liss, Inc. [source]


Negative effects of the amino acids Lys, His, and Thr on S6K1 phosphorylation in mammary epithelial cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2008
Rotem Ladovsky Prizant
Abstract The role of essential amino acids (AA) on protein synthesis via the mTOR pathway was studied in murine mammary epithelial cells cultured under lactogenic conditions. Leu, Ile, and Val increased S6K1 phosphorylation compared to that measured in AA-deprived cells. Trp, Phe, and Met had no effect. Surprisingly, Lys, His, and Thr inhibited S6K1 phosphorylation in both murine and bovine mammary cells. Thr exhibited the most potent inhibition, being the only amino acid that competed with Leu's positive role. In non-deprived cells, there was no observable effect of Lys, His, or Thr on S6K1 phosphorylation at concentrations up to five times those in the medium. However, their addition as a mix revealed a synergistic negative effect. Supplementation of Lys, His, and Thr abrogated mTOR Ser 2448 phosphorylation, with no effect on Akt Ser 473,an mTORC2 target. This confirms specific mTORC1 regulation of S6K1 phosphorylation. The individual supplementation of Lys, His, and Thr maintained a low level of IRS-1 phosphorylation, which was dose-dependently increased by their combined addition. Thus, in parallel to inhibiting S6K1 activity, these AA may act synergistically to activate an additional kinase, phosphorylating IRS-1 via an S6K1-independent pathway. In cultures supplemented by Lys, His, and Thr, cellular protein synthesis decreased by up to 65%. A more pronounced effect was observed on ,-casein synthesis. These findings indicate that positive and negative signaling from AA to the mTOR pathway, combined with modulation of insulin sensitization, mediate the synthesis rates of total and specific milk proteins in mammary epithelial cells. J. Cell. Biochem. 105: 1038,1047, 2008. © 2008 Wiley-Liss, Inc. [source]


Extracellular matrix regulates alpha s1-casein gene expression in rabbit primary mammary cells and CCAAT enhancer binding protein (C/EBP) binding activity

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2001
Geneviève Jolivet
Abstract Previous studies have shown that both the signal transducer and activator of transcription 5 (STAT5) and the CCAAT enhancer binding proteins (C/EBPs) are involved in the regulation of casein gene expression by mammary epithelial cells. Prolactin (Prl) activation of STAT5 is necessary for casein gene expression. The extracellular matrix (ECM) regulates also casein gene expression. Here, we have investigated whether ECM regulates C/EBPs activity in primary rabbit mammary epithelial cells. Isolated primary mammary cells were cultured on plastic or on floating collagen I gel. Prolactin induced ,s 1-casein gene expression when cells were cultured on collagen but not on plastic. It is noteworthy that activated STAT5 was detected in both culture conditions. Several STAT5 isoforms (STAT5a, STAT5b, and other STAT5 related isoforms, some with lower molecular weight than the full-length STAT5a and STAT5b) were detected under the different culture conditions. However, their presence was not related to the expression of ,s 1-casein gene. The binding of nuclear factors to a C/EBP specific binding site and the protein level of C/EBP, differed in cells cultured on plastic or on collagen but these parameters were not modified by Prl. This suggests that C/EBP binding activity was regulated by ECM and not by Prl. Interestingly, these modifications were correlated to the expression of the ,s 1-casein gene. Hence, the activation of the ,s 1-casein gene expression depends on two independent signals, one delivered by Prl via the activation of STAT5, the other delivered by ECM via C/EBP. J. Cell. Biochem. 82:371,386, 2001. © 2001 Wiley-Liss, Inc. [source]


Detection and analysis of mammary gland stem cells,

THE JOURNAL OF PATHOLOGY, Issue 2 2009
J Stingl
Abstract Emerging evidence from a variety of tissue types, including the mammary gland, suggests that normal stem and progenitor cells are the likely targets for malignant transformation, and that these transformed cells can function as cancer stem cells that drive tumour growth. In order to develop therapies that target these cancer stem cells, it is essential to determine the molecular mechanisms that regulate the growth and differentiation of these cells and their normal counterparts. To this end, a number of quantitative robust clonal assays have been developed that can detect the presence of human and mouse mammary stem and progenitor cells. These assays, when used in conjunction with cell-sorting strategies, have permitted the prospective isolation and characterization of a variety of cell types, including stem cells. Evidence to date indicates that these stem cells exhibit properties of basal mammary cells, possess extensive self-renewal properties, and are capable of generating a large number of phenotypically-distinct progenitor cells, many of which display characteristics of luminal cells. This review article will focus on the assays used to detect mammary stem and progenitor cells, some of the properties of these cells and their progeny and how they relate to the cancer stem cells that drive breast tumour growth. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Ultrastructural Morphometry of Mammary Gland in Transgenic and Non-transgenic Rabbits

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2006
S. Dragin
Summary The mammary gland of transgenic animals has been used for the production of recombinant proteins of therapeutic and nutraceutical use. The objective of this study was to compare the ultrastructure of transgenic and non-transgenic rabbit mammary gland tissue. New Zealand White transgenic rabbits were obtained by breeding non-transgenic rabbits with transgenic founder rabbits containing a whey acidic protein-human factor VIII (WAP-hFVIII) transgene integrated into their genome. Samples of mammary gland tissue from lactating rabbit females were isolated by surgical procedures. These samples were examined by optical and electron microscopy and photographs were taken. Measurements of ultrastructural organelles were made from digital images of the mammary cells. No differences were found in the cellular structure of mammary tissue, but significant differences t(0.001) in the relative volume of mitochondria and vacuoles between transgenic and non-transgenic mammary gland epithelium were observed. [source]


Seaweed Prevents Breast Cancer?

CANCER SCIENCE, Issue 5 2001
Hiroomi Funahashi
To investigate the chemopreventive effects of seaweed on breast cancer, we have been studying the relationship between iodine and breast cancer. We found earlier that the seaweed, wakame, showed a suppressive effect on the proliferation of DMBA (dimethylbenz(a)anthracene)-induced rat mammary tumors, possibly via apoptosis induction. In the present study, powdered mekabu was placed in distilled water, and left to stand for 24 h at 4°C. The filtered supernatant was used as mekabu solution. It showed an extremely strong suppressive effect on rat mammary carcinogenesis when used in daily drinking water, without toxicity. In vitro, mekabu solution strongly induced apoptosis in 3 kinds of human breast cancer cells. These effects were stronger than those of a chemothera-peutic agent widely used to treat human breast cancer. Furthermore, no apoptosis induction was observed in normal human mammary cells. In Japan, mekabu is widely consumed as a safe, inexpensive food. Our results suggest that mekabu has potential for chemoprevention of human breast [source]