Mammalian Target (mammalian + target)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Androgen replacement therapy improves function in male rat muscles independently of hypertrophy and activation of the Akt/mTOR pathway

ACTA PHYSIOLOGICA, Issue 4 2009
C. Hourdé
Abstract Aim:, We analysed the effect of physiological doses of androgens following orchidectomy on skeletal muscle and bone of male rats, as well as the relationships between muscle performance, hypertrophy and the Akt/mammalian target of rapamycin (mTOR) signalling pathway involved in the control of anabolic and catabolic muscle metabolism. Methods:, We studied the soleus muscle and tibia from intact rats (SHAM), orchidectomized rats treated for 3 months with vehicle (ORX), nandrolone decanoate (NAN) or dihydrotestosterone (DHT). Results:, Orchidectomy had very little effect on the soleus muscle. However, maximal force production by soleus muscle (+69%) and fatigue resistance (+35%) in NAN rats were both increased when compared with ORX rats. In contrast, DHT treatment did not improve muscle function. The relative number of muscle fibres expressing slow myosin heavy chain and citrate synthase activity were not different in NAN and ORX rats. Moreover, NAN and DHT treatments did not modify muscle weights and cross-sectional area of muscle fibres. Furthermore, phosphorylation levels of downstream targets of the Akt/mTOR signalling pathway, Akt, ribosomal protein S6 and eukaryotic initiation factor 4E-binding protein 1 were similar in muscles of NAN, DHT and ORX rats. In addition, trabecular tibia from NAN and DHT rats displayed higher bone mineral density and bone volume when compared with ORX rats. Only in NAN rats was this associated with increased bone resistance to fracture. Conclusion:, Physiological doses of androgens are beneficial to muscle performance in orchidectomized rats without relationship to muscle and fibre hypertrophy and activation of the Akt/mTOR signalling pathway. Taken together our data clearly indicate that the activity of androgens on muscle and bone could participate in the global improvement of musculoskeletal status in the context of androgen deprivation induced by ageing. [source]


NV-128, a novel isoflavone derivative, induces caspase-independent cell death through the Akt/mammalian target of rapamycin pathway

CANCER, Issue 14 2009
Ayesha B. Alvero MD
Abstract BACKGROUND: Resistance to apoptosis is 1 of the key events that confer chemoresistance and is mediated by the overexpression of antiapoptotic proteins, which inhibit caspase activation. The objective of this study was to evaluate whether the activation of an alternative, caspase-independent cell death pathway could promote death in chemoresistant ovarian cancer cells. The authors report the characterization of NV-128 as an inducer of cell death through a caspase-independent pathway. METHODS: Primary cultures of epithelial ovarian cancer (EOC) cells were treated with increasing concentration of NV-128, and the concentration that caused 50% growth inhibition (GI50) was determined using a proprietary assay. Apoptotic proteins were characterized by Western blot analyses, assays that measured caspase activity, immunohistochemistry, and flow cytometry. Protein-protein interactions were determined using immunoprecipitation. In vivo activity was measured in a xenograft mice model. RESULTS: NV-128 was able to induce significant cell death in both paclitaxel-resistant and carboplatin-resistant EOC cells with a GI50 between 1 ,g/mL and 5 ,g/mL. Cell death was characterized by chromatin condensation but was caspase-independent. The activated pathway involved the down-regulation of phosphorylated AKT, phosphorylated mammalian target of rapamycin (mTOR), and phosphorylated ribosomal p70 S6 kinase, and the mitochondrial translocation of beclin-1 followed by nuclear translocation of endonuclease G. CONCLUSIONS: The authors characterized a novel compound, NV-128, which inhibits mTOR and promotes caspase-independent cell death. The current results indicated that inhibition of mTOR may represent a relevant pathway for the induction of cell death in cells resistant to the classic caspase-dependent apoptosis. These findings demonstrate the possibility of using therapeutic drugs, such as NV-128, which may have beneficial effects in patients with chemoresistant ovarian cancer. Cancer 2009. © 2009 American Cancer Society. [source]


Mammalian Target of Rapamycin Inhibitor Dyslipidemia in Kidney Transplant Recipients

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2008
B. L. Kasiske
The incidence, pathogenesis, consequences and treatment of mammalian target of rapamycin (mTOR) inhibitor dyslipidemia are not well described. We conducted a systematic review of randomized controlled trials reporting cholesterol and triglycerides in mTOR versus non-mTOR inhibitor immunosuppressive treatment regimens in kidney transplant recipients. All but one of 17 trials reported higher levels of cholesterol and triglycerides, or an increased prevalence of treatment with lipid-lowering agents. Approximately 60% of mTOR inhibitor-treated patients received lipid-lowering agents (2-fold higher than controls). There appeared to be little difference between dyslipidemias caused by sirolimus (14 trials) versus everolimus (3 trials). It was difficult to determine the extent to which declines in lipids over time posttransplant were due to lipid-lowering therapy, changes in doses and/or discontinuations of mTOR inhibitors. From the four trials that measured lipoproteins, it appeared that at least some of the increase in total cholesterol with mTOR inhibitors was due to increased low-density lipoprotein cholesterol. What direct or indirect effects mTOR inhibitors have on atherosclerotic cardiovascular disease in kidney transplant patients are unknown. However, in the absence of the necessary clinical trials, dyslipidemia should be managed, as it would be in nontransplant patients at high risk for cardiovascular disease. [source]


Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2008
Frank Schmitz
Abstract The mammalian target of rapamycin (mTOR) can be viewed as cellular master complex scoring cellular vitality and stress. Whether mTOR controls also innate immune-defenses is currently unknown. Here we demonstrate that TLR activate mTOR via phosphoinositide 3-kinase/Akt. mTOR physically associates with the MyD88 scaffold protein to allow activation of interferon regulatory factor-5 and interferon regulatory factor-7, known as master transcription factors for pro-inflammatory cytokine- and type I IFN-genes. Unexpectedly, inactivation of mTOR did not prevent but increased lethality of endotoxin-mediated shock, which correlated with increased levels of IL-1,. Mechanistically, mTOR suppresses caspase-1 activation, thus inhibits release of bioactive IL-1,. We have identified mTOR as indispensable component of PRR signal pathways, which orchestrates the defense program of innate immune cells. [source]


Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model

INTERNATIONAL JOURNAL OF CANCER, Issue 8 2007
Sven A. Lang
Abstract The mammalian target of rapamycin (mTOR) has become an interesting target for cancer therapy through its influence on oncogenic signals, which involve phosphatidylinositol-3-kinase and hypoxia-inducible factor-1, (HIF-1,). Since mTOR is an upstream regulator of HIF-1,, a key mediator of gastric cancer growth and angiogenesis, we investigated mTOR activation in human gastric adenocarcinoma specimens and determined whether rapamycin could inhibit gastric cancer growth in mice. Expression of phospho-mTOR was assessed by immunohistochemical analyses of human tissues. For in vitro studies, human gastric cancer cell lines were used to determine S6K1, 4E-BP-1 and HIF-1, activation and cancer cell motility upon rapamycin treatment. Effects of rapamycin on tumor growth and angiogenesis in vivo were assessed in both a subcutaneous tumor model and in an experimental model with orthotopically grown tumors. Mice received either rapamycin (0.5 mg/kg/day or 1.5 mg/kg/day) or diluent per intra-peritoneal injections. In addition, antiangiogenic effects were monitored in vivo using a dorsal-skin-fold chamber model. Immunohistochemical analyses showed strong expression of phospho-mTOR in 60% of intestinal- and 64% of diffuse-type human gastric adenocarcinomas. In vitro, rapamycin-treatment effectively blocked S6K1, 4E-BP-1 and HIF-1, activation, and significantly impaired tumor cell migration. In vivo, rapamycin-treatment led to significant inhibition of subcutaneous tumor growth, decreased CD31-positive vessel area and reduced tumor cell proliferation. Similar significant results were obtained in an orthotopic model of gastric cancer. In the dorsal-skin-fold chamber model, rapamycin-treatment significantly inhibited tumor vascularization in vivo. In conclusion, mTOR is frequently activated in human gastric cancer and represents a promising new molecular target for therapy. © 2007 Wiley-Liss, Inc. [source]


In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human pancreatic cancer

INTERNATIONAL JOURNAL OF CANCER, Issue 9 2006
Daisuke Ito
Abstract Mammalian target of rapamycin (mTOR) is considered to be a major effector of cell growth and proliferation that controls protein synthesis through a large number of downstream targets. We investigated the expression of the phosphatidylinositol 3,-kinase (PI3K)/mTOR signaling pathway in human pancreatic cancer cells and tissues, and the in vivo antitumor effects of the mTOR inhibitor CCI-779 with/without gemcitabine in xenograft models of human pancreatic cancer. We found that the Akt, mTOR and p70 S6 kinase (S6K1) from the PI3K/mTOR signaling pathway were activated in all of the pancreatic cancer cell lines examined. When surgically resected tissue specimens of pancreatic ductal adenocarcinoma were examined, phosphorylation of Akt, mTOR and S6K1 was detected in 50, 55 and 65% of the specimens, respectively. Although CCI-779 had no additive or synergistic antiproliferative effect when combined with gemcitabine in vitro, it showed significant antitumor activity in the AsPC-1 subcutaneous xenograft model as both a single agent and in combination with gemictabine. Furthermore, in the Suit-2 peritoneal dissemination xenograft model, the combination of these 2 drugs achieved significantly better survival when compared with CCI-779 or gemcitabine alone. These results demonstrate promising activity of the mTOR inhibitor CCI-779 against human pancreatic cancer, and suggest that the inhibition of mTOR signaling can be exploited as a potentially tumor-selective therapeutic strategy. © 2005 Wiley-Liss, Inc. [source]


Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis

ARTHRITIS & RHEUMATISM, Issue 8 2010
Daniel Cejka
Objective Activation of the mammalian target of rapamycin (mTOR) pathway is important for immune cell activation and bone metabolism. To date, the contribution of mTOR signaling to joint inflammation and structural bone and cartilage damage is unknown. The aim of this study was to investigate the potential of inhibiting mTOR as a treatment of inflammatory arthritis. Methods Human tumor necrosis factor,transgenic mice in which inflammatory arthritis was developing were treated with 2 different mTOR inhibitors, sirolimus or everolimus. The effects of treatment on clinical disease activity, inflammation, and localized joint and cartilage destruction were studied. In addition, the effects of mTOR inhibition on osteoclast survival and expression of key molecules of osteoclast function were analyzed in vitro. Moreover, synovial tissue from patients with rheumatoid arthritis (RA) was assessed for activation of the mTOR pathway. Results Inhibition of mTOR by sirolimus or everolimus reduced synovial osteoclast formation and protected against local bone erosions and cartilage loss. Clinical signs of arthritis improved after mTOR inhibition, and histologic evaluation showed a decrease in synovitis. In vitro, mTOR inhibition down-regulated the expression of digestive enzymes and led to osteoclast apoptosis. Moreover, mTOR signaling was shown to be active in the synovial membrane of patients with RA, particularly in synovial osteoclasts. Conclusion Signaling through mTOR is an important link between synovitis and structural damage in inflammatory arthritis. Current pharmacologic inhibitors of mTOR could be effective in protecting joints against structural damage. [source]


mTOR inhibitor-associated dermatologic and mucosal problems

CLINICAL TRANSPLANTATION, Issue 2 2010
Josep M. Campistol
Campistol JM, de Fijter JW, Flechner SM, Langone A, Morelon E, Stockfleth E. mTOR inhibitor-associated dermatologic and mucosal problems. Clin Transplant 2010 DOI: 10.1111/j.1399-0012.2010.01232.x. © 2010 John Wiley & Sons A/S. Abstract:, Mammalian target of rapamycin inhibitor use is associated with numerous adverse events, including dermatologic and mucosal problems. Awareness of these complications, which clinically manifest across a severity spectrum from minor through severe and may occur at varied time points after initiation of sirolimus therapy, can be useful to clinicians in both managing these events and determining the appropriate intervention(s) for patients. This manuscript examines the dermatologic and mucosal problems associated with mammalian target of rapamycin inhibitor use, reviews the literature, and provides personal experiences regarding the management and treatment of these adverse events. [source]


Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex

ACTA PHYSIOLOGICA, Issue 1 2010
H. C. Dreyer
Abstract Aim:, Sex differences are evident in human skeletal muscle as the cross-sectional area of individual muscle fibres is greater in men than in women. We have recently shown that resistance exercise stimulates mammalian target of rapamycin (mTOR) signalling and muscle protein synthesis in humans during early post-exercise recovery. Therefore, the aim of this study was to determine if sex influences the muscle protein synthesis response during recovery from resistance exercise. Methods:, Seventeen subjects, nine male and eight female, were studied in the fasted state before, during and for 2 h following a bout of high-intensity leg resistance exercise. Mixed muscle protein fractional synthetic rate was measured using stable isotope techniques and mTOR signalling was assessed by immunoblotting from repeated vastus lateralis muscle biopsy samples. Results:, Post-exercise muscle protein synthesis increased by 52% in the men and by 47% in the women (P < 0.05) and was not different between groups (P > 0.05). Akt phosphorylation increased in both groups at 1 h post-exercise (P < 0.05) and returned to baseline during 2 h post-exercise with no differences between groups (P > 0.05). Phosphorylation of mTOR and its downstream effector S6K1 increased significantly and similarly between groups during post-exercise recovery (P < 0.05). eEF2 phosphorylation decreased at 1- and 2 h post-exercise (P < 0.05) to a similar extent in both groups. Conclusion:, The contraction-induced increase in early post-exercise mTOR signalling and muscle protein synthesis is independent of sex and appears to not play a role in the sexual dimorphism of leg skeletal muscle in young men and women. [source]


LKB1 and AMP-activated protein kinase control of mTOR signalling and growth

ACTA PHYSIOLOGICA, Issue 1 2009
R. J. Shaw
Abstract The AMP-activated serine/threonine protein kinase (AMPK) is a sensor of cellular energy status found in all eukaryotes that is activated under conditions of low intracellular ATP following stresses such as nutrient deprivation or hypoxia. In the past 5 years, work from a large number of laboratories has revealed that one of the major downstream signalling pathways regulated by AMPK is the mammalian target-of-rapamycin [mammalian target of rapamycin (mTOR) pathway]. Interestingly, like AMPK, the mTOR serine/threonine kinase plays key roles not only in growth control and cell proliferation but also in metabolism. Recent work has revealed that across eukaryotes mTOR orthologues are found in two biochemically distinct complexes and only one of those complexes (mTORC1 in mammals) is acutely sensitive to rapamycin and regulated by nutrients and AMPK. Many details of the molecular mechanism by which AMPK inhibits mTORC1 signalling have also been decoded in the past 5 years. AMPK directly phosphorylates at least two proteins to induce rapid suppression of mTORC1 activity, the TSC2 tumour suppressor and the critical mTORC1 binding subunit raptor. Here we explore the molecular connections between AMPK and mTOR signalling pathways and examine the physiological processes in which AMPK regulation of mTOR is critical for growth or metabolic control. The functional conservation of AMPK and TOR in all eukaryotes, and the sequence conservation around the AMPK phosphorylation sites in raptor across all eukaryotes examined suggest that this represents a fundamental cell growth module connecting nutrient status to the cell growth machinery. These findings have broad implications for the control of cell growth by nutrients in a number of cellular and organismal contexts. [source]


Pretreatment with insulin before ischaemia reduces infarct size in Langendorff-perfused rat hearts

ACTA PHYSIOLOGICA, Issue 2 2009
B. N. Fuglesteg
Abstract Aim:, To compare the possible role of Akt and mammalian target of rapamycin (mTOR) in mediating cardioprotection against ischaemia under three different conditions: (1) During ischaemic preconditioning (IPC), (2) when insulin was given as a pretreatment agent (InsPC) and (3) when insulin was given as a reperfusion cell survival agent (InsR). Methods:, Isolated perfused rat hearts were subjected to IPC (3 × 5 min) or InsPC (50 mU mL,1; 3 × 5 min), before 30 min of regional ischaemia followed by 120 min of reperfusion ± 1L-6-hydroxymethyl- chiro -inositol-2 - [(R)-2- O -methyl-3- O -octadecylcarbonate] (HIMO) (20 ,m; Akt inhibitor) or rapamycin (1 nm; mTOR inhibitor). In addition, insulin (3 mU mL,1) was given at the onset of reperfusion, ±HIMO or rapamycin. Risk zone (R) and infarct size (I) were determined with Evans blue and tetrazolium staining respectively. Western blot analysis was performed on tissue from Langendorff-perfused rat hearts and cell lysates from cultured HL1 cells. Results:, IPC, InsPC and InsR treatment resulted in a significant reduction in infarct size compared to controls (all P < 0.05). This protective effect of IPC and insulin was abolished by the inhibitors. However, the putative Akt inhibitor, although capable of abolishing cardioprotection induced by insulin, was not able to inhibit insulin-induced phosphorylation of Akt in Langendorff-perfused rat hearts and cultured HL1 cells. The target for this compound therefore remains to be determined. Conclusion:, IPC and insulin (either as InsPC or InsR) appear to activate mTOR, and this kinase seems to play an essential role in cardioprotection against ischaemia and reperfusion injury as rapamycin blocked the protection. [source]


Cell hydration and mTOR-dependent signalling

ACTA PHYSIOLOGICA, Issue 1-2 2006
F. Schliess
Abstract Insulin- and amino acid-induced signalling by the mammalian target of rapamycin (mTOR) involves hyperphosphorylation of the p70 ribosomal S6 protein kinase (p70S6-kinase) and the eukaryotic initiation factor 4E (eIF4E) binding protein 4E-BP1 and contributes to regulation of protein metabolism. This review considers the impact of cell hydration on mTOR-dependent signalling. Although hypoosmotic hepatocyte swelling in some instances activates p70S6-kinase, the hypoosmolarity-induced proteolysis inhibition in perfused rat liver is insensitive to mTOR inhibition by rapamycin. Likewise, swelling-dependent proteolysis inhibition by insulin and swelling-independent proteolysis inhibition by leucine, a potent activator of p70S6-kinase and 4E-BP1 hyperphosphorylation, in perfused rat liver is insensitive to rapamycin, indicating that at least rapamycin-sensitive mTOR signalling is not involved. Hyperosmotic dehydration in different cell types produces inactivation of signalling components around mTOR, thereby attenuating insulin-induced glucose uptake, glycogen synthesis, and lipogenesis in adipocytes, and MAP-kinase phosphatase MKP-1 expression in hepatoma cells. Direct inactivation of mTOR, stimulation of the AMP-activated protein kinase, and the destabilization of individual proteins may impair mTOR signalling under dehydrating conditions. Further investigation of the crosstalk between the mTOR pathway(s) and hyperosmotic signalling will improve our understanding about the contribution of cell hydration changes in health and disease and will provide further rationale for fluid therapy of insulin-resistant states. [source]


Balancing needs and means: the dilemma of the ,-cell in the modern world

DIABETES OBESITY & METABOLISM, Issue 2009
G. Leibowitz
The insulin resistance of type 2 diabetes mellitus (T2DM), although important for its pathophysiology, is not sufficient to establish the disease unless major deficiency of ,-cell function coexists. This is demonstrated by the fact that near-physiological administration of insulin (CSII) achieved excellent blood glucose control with doses similar to those used in insulin-deficient type 1 diabetics. The normal ,-cell adapts well to the demands of insulin resistance. Also in hyperglycaemic states some degree of adaptation does exist and helps limit the severity of disease. We demonstrate here that the mammalian target of rapamycin (mTOR) system might play an important role in this adaptation, because blocking mTORC1 (complex 1) by rapamycin in the nutritional diabetes model Psammomys obesus caused severe impairment of ,-cell function, increased ,-cell apoptosis and progression of diabetes. On the other hand, under exposure to high glucose and FFA (gluco-lipotoxicity), blocking mTORC1 in vitro reduced endoplasmic reticulum (ER) stress and ,-cell death. Thus, according to the conditions of stress, mTOR may have beneficial or deleterious effects on the ,-cell. ,-Cell function in man can be reduced without T2DM/impaired glucose tolerance (IGT). Prospective studies have shown subjects with reduced insulin response to present, several decades later, an increased incidence of IGT/T2DM. From these and other studies we conclude that T2DM develops on the grounds of ,-cells whose adaptation capacity to increased nutrient intake and/or insulin resistance is in the lower end of the normal variation. Inborn and acquired factors that limit ,-cell function are diabetogenic only in a nutritional/metabolic environment that requires high functional capabilities from the ,-cell. [source]


Translating nociceptor sensitivity: the role of axonal protein synthesis in nociceptor physiology

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2009
Theodore J. Price
Abstract The increased sensitivity of peripheral pain-sensing neurons, or nociceptors, is a major cause of the sensation of pain that follows injury. This plasticity is thought to contribute to the maintenance of chronic pain states. Although we have a broad knowledge of the factors that stimulate changes in nociceptor sensitivity, the cellular mechanisms that underlie this plasticity are still poorly understood; however, they are likely to involve changes in gene expression required for the phenotypic and functional changes seen in nociceptive neurons after injury. While the regulation of gene expression at the transcriptional level has been studied extensively, the regulation of protein synthesis, which is also a tightly controlled process, has only recently received more attention. Despite the established role of protein synthesis in the plasticity of neuronal cell bodies and dendrites, little attention has been paid to the role of translation control in mature undamaged axons. In this regard, several recent studies have demonstrated that the control of protein synthesis within the axonal compartment is crucial for the normal function and regulation of sensitivity of nociceptors. Pathways and proteins regulating this process, such as the mammalian target of rapamycin signaling cascade and the fragile X mental retardation protein, have recently been identified. We review here recent evidence for the regulation of protein synthesis within a nociceptor's axonal compartment and its contribution to this neuron's plasticity. We believe that an increased understanding of this process will lead to the identification of novel targets for the treatment of chronic pain. [source]


Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals

FEBS JOURNAL, Issue 16 2009
Joan Duran
The ubiquitous isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (uPFK-2), a product of the Pfkfb3 gene, plays a crucial role in the control of glycolytic flux. In this study, we demonstrate that Pfkfb3 gene expression is increased in streptozotocin-induced diabetic mouse liver. The Pfkfb3/-3566 promoter construct linked to the luciferase reporter gene was delivered to the liver via hydrodynamic gene transfer. This promoter was upregulated in streptozotocin-induced diabetic mouse liver compared with transfected healthy cohorts. In addition, increases were observed in Pfkfb3 mRNA and uPFK-2 protein levels, and intrahepatic fructose-2,6-bisphosphate concentration. During streptozotocin-induced diabetes, phosphorylation of both p38 mitogen-activated protein kinase and Akt was detected, together with the overexpression of the proliferative markers cyclin D and E2F. These findings indicate that uPFK-2 induction is coupled to enhanced hepatocyte proliferation in streptozotocin-induced diabetic mouse liver. Expression decreased when hepatocytes were treated with either rapamycin or LY 294002. This shows that uPFK-2 regulation is phosphoinositide 3-kinase,Akt,mammalian target of rapamycin dependent. These results indicate that fructose-2,6-bisphosphate is essential to the maintenance of the glycolytic flux necessary for providing energy and biosynthetic precursors to dividing cells. [source]


Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage,

HEPATOLOGY, Issue 2 2009
Laura Elisa Buitrago-Molina
In this study, everolimus (RAD001) was used to determine the role of mammalian target of rapamycin (mTOR) in hepatocarcinogenesis. We show that RAD001 effectively inhibits proliferation of hepatocytes during chronic liver injury. Remarkably, the ability of RAD001 to impair cell cycle progression requires activation of the DNA damage response; loss of p53 significantly attenuates the antiproliferative effects of mTOR inhibition. RAD001 modulates the expression of specific cell cycle,related proteins and the assembly of cyclin,cyclin-dependent kinase complexes to prevent cell cycle progression. Furthermore, RAD001 sustains the apoptosis sensitivity of hepatocytes during chronic liver injury by inhibiting p53-induced p21 expression. Long-term treatment with RAD001 markedly delays DNA damage,induced liver tumor development. Conclusion: We provide evidence that mTOR inhibition has a substantial effect on sequential carcinogenesis and may offer an effective strategy to delay liver tumor development in patients at risk. (HEPATOLOGY 2009;50:500,509.) [source]


Enhanced expression of vascular endothelial growth factor-A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis,

HEPATOLOGY, Issue 6 2009
Jui-Chu Yang
Ground glass hepatocytes (GGH) in chronic hepatitis B virus (HBV) infection harbor HBV pre-S deletion mutants in endoplasmic reticulum (ER) and exhibit complex biologic features such as ER stress, DNA damage, and growth advantage. The presence of pre-S mutants in serum has been shown to predict the development of hepatocellular carcinoma (HCC) in HBV carriers. GGHs hence represent a potentially preneoplastic lesion. Whether a specific growth factor is overexpressed and activated in GGHs remains to be clarified. In this study, growth factor(s) up-regulated by pre-S mutants was identified using a growth factor array in HuH-7 cells. Immunohistochemistry, reverse-transcriptase polymerase chain reaction, and Western blot analysis were performed to study the participation of these genes and their signal pathways in HuH-7 cells and liver tissues. We demonstrate that vascular endothelial growth factor-A (VEGF-A) was up-regulated by pre-S mutants in HuH-7 cells and further confirmed in GGHs by immunostaining. The VEGF-A up-regulation by pre-S mutants could be suppressed by vomitoxin, an ER stress inhibitor. Furthermore, pre-S mutants-expressed HuH-7 cells exhibited activation of Akt/mTOR (mammalian target of rapamycin) signaling and increased growth advantage, which could be inhibited by VEGF-A neutralization. Consistent with this notion, enhanced expression of VEGF-A and activation of Akt/mTOR signaling, comparable to the levels of paired HCC tissues, were also detected in HBV-related nontumorous livers. Conclusion: The enhanced expression of VEGF-A in GGHs provides potential mechanism to explain the progression from preneoplastic GGHs to HCC in chronic HBV infection. (HEPATOLOGY 2009;49:1962,1971.) [source]


Immunosuppression using the mTOR inhibition mechanism affects replacement of rat liver with transplanted cells,

HEPATOLOGY, Issue 2 2006
Yao-Ming Wu
Successful grafting of tissues or cells from mismatched donors requires systemic immunosuppression. It is yet to be determined whether immunosuppressive manipulations perturb transplanted cell engraftment or proliferation. We used syngeneic and allogeneic cell transplantation assays based on F344 recipient rats lacking dipeptidyl peptidase IV enzyme activity to identify transplanted hepatocytes. Immunosuppressive drugs used were tacrolimus (a calcineurin inhibitor) and its synergistic partners, rapamycin (a regulator of the mammalian target of rapamycin [mTOR]) and mycophenolate mofetil (an inosine monophosphate dehydrogenase inhibitor). First, suitable drug doses capable of inducing long-term survival of allografted hepatocytes were identified. In pharmacologically effective doses, rapamycin enhanced cell engraftment by downregulating hepatic expression of selected inflammatory cytokines but profoundly impaired proliferation of transplanted cells, which was necessary for liver repopulation. In contrast, tacrolimus and/or mycophenolate mofetil perturbed neither transplanted cell engraftment nor their proliferation. Therefore, mTOR-dependent extracellular and intracellular mechanisms affected liver replacement with transplanted cells. In conclusion, insights into the biological effects of specific drugs on transplanted cells are critical in identifying suitable immunosuppressive strategies for cell therapy. (HEPATOLOGY 2006;44:410,419.) [source]


A gene-alteration profile of human lung cancer cell lines,

HUMAN MUTATION, Issue 8 2009
Raquel Blanco
Abstract Aberrant proteins encoded from genes altered in tumors drive cancer development and may also be therapeutic targets. Here we derived a comprehensive gene-alteration profile of lung cancer cell lines. We tested 17 genes in a panel of 88 lung cancer cell lines and found the rates of alteration to be higher than previously thought. Nearly all cells feature inactivation at TP53 and CDKN2A or RB1, whereas BRAF, MET, ERBB2, and NRAS alterations were infrequent. A preferential accumulation of alterations among histopathological types and a mutually exclusive occurrence of alterations of CDKN2A and RB1 as well as of KRAS, epidermal growth factor receptor (EGFR), NRAS, and ERBB2 were seen. Moreover, in non-small-cell lung cancer (NSCLC), concomitant activation of signal transduction pathways known to converge in mammalian target of rapamycin (mTOR) was common. Cells with single activation of ERBB2, PTEN, or MET signaling showed greater sensitivity to cell-growth inhibition induced by erlotinib, LY294002, and PHA665752, respectively, than did cells featuring simultaneous activation of these pathways, underlining the need for combined therapeutic strategies in targeted cancer treatments. In conclusion, our gene-alteration landscape of lung cancer cell lines provides insights into how gene alterations accumulate and biological pathways interact in cancer. Hum Mutat 30,1,8, 2009. © 2009 Wiley-Liss, Inc. [source]


PKR, a cognitive decline biomarker, can regulate translation via two consecutive molecular targets p53 and Redd1 in lymphocytes of AD patients

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009
Milena Damjanac
Abstract In Alzheimer's disease (AD), the control of translation is dysregulated, precisely, two opposite pathways: double-stranded RNA-dependent protein kinase (PKR) is up-regulated and mammalian target of rapamycin (mTOR) is down-regulated. These biochemical alterations were found at the periphery in lymphocytes of AD patients and were significantly correlated with cognitive and memory test scores. However, the molecular crosslink between these two opposite signalling pathways remains unknown. The tumour suppressor p53 and Redd1 (regulated in development and DNA damage response) could be two downstream targets of active PKR to explain the breakdown of translation in AD patients. In this study, the protein and gene levels of p53 and Redd1 were assayed in lymphocytes of AD patients and in age-matched controls by Western blotting and RT-PCR. Furthermore, correlations were analysed with both the level of active PKR and the Mini Mental State Examination score (MMSE). The results show that the gene and protein levels of p53 and Redd1 were significantly increased about 1.5-fold for both gene and Redd1 protein and 2.3-fold for active p53 in AD lymphocytes compared to age-matched controls. Furthermore, statistical correlations between proteins and genes suggest that active PKR could phosphorylate p53 which could induce the transcription of Redd1 gene. No correlations were found between MMSE scores and levels of p53 or Redd1, contrary to active PKR levels. PKR represents a cognitive decline biomarker able to dysregulate translation via two consecutive targets p53 and Redd1 in AD lymphocytes. [source]


Rapamycin impairs trabecular bone acquisition from high-dose but not low-dose intermittent parathyroid hormone treatment

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009
P.J. Niziolek
The osteo-anabolic effects of intermittent parathyroid hormone (PTH) treatment require insulin-like growth factor (IGF) signaling through the IGF-I receptor. A major downstream target of the IGF-I receptor (via Akt) is the mammalian target of rapamycin (mTOR), a kinase involved in protein synthesis. We investigated whether the bone-building effects of intermittent PTH require functional mTOR signaling. Mice were treated with daily PTH 1,34 (0, 10, 30, or 90,µg/kg) for 6 weeks in the presence or absence of rapamycin, a selective inhibitor of mTOR. We found that all PTH doses were effective in enhancing bone mass, whether rapamycin was present or not. Rapamycin had little to no effect on the anabolic response at low (10,µg) PTH doses, small effects in a minority of anabolic measures at moderate doses (30,µg), but the anabolic effects of high-dose PTH (90,µg) were consistently and significantly suppressed by rapamycin (,4,36% reduction). Serum levels of Trap5b, a marker of resorption, were significantly enhanced by rapamycin, but these effects were observed whether PTH was absent or present. Our data suggest that intermittent PTH, particularly at lower doses, is effective in building bone mass in the presence of rapamycin. However, the full anabolic effects of higher doses of PTH are significantly suppressed by rapamycin, suggesting that PTH might normally activate additional pathways (including mTOR) for its enhanced high-dose anabolic effects. Clinical doses of intermittent PTH could be an effective treatment for maintaining or increasing bone mass among patients taking rapamycin analogs for unrelated health issues. J. Cell. Physiol. 221: 579,585, 2009. © 2009 Wiley-Liss, Inc. [source]


Recent advances in vertebrate aging research 2009

AGING CELL, Issue 3 2010
Steven Austad
Summary Among the notable trends seen in this year's highlights in mammalian aging research is an awakening of interest in the assessment of age-related measures of mouse health in addition to the traditional focus on longevity. One finding of note is that overexpression of telomerase extended life and improved several indices of health in mice that had previously been genetically rendered cancer resistant. In another study, resveratrol supplementation led to amelioration of several degenerative conditions without affecting mouse lifespan. A primate dietary restriction (DR) study found that restriction led to major improvements in glucoregulatory status along with provocative but less striking effects on survival. Visceral fat removal in rats improved their survival, although not as dramatically as DR. An unexpected result showing the power of genetic background effects was that DR shortened the lifespan of long-lived mice bearing Prop1df, whereas a previous report in a different background had found DR to extend the lifespan of Prop1df mice. Treatment with the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, enhanced the survival of even elderly mice and improved their vaccine response. Genetic inhibition of a TOR target made female, but not male, mice live longer. This year saw the mTOR network firmly established as a major modulator of mammalian lifespan. [source]


Transcriptional response to aging and caloric restriction in heart and adipose tissue

AGING CELL, Issue 5 2007
Nancy J. Linford
Summary Sustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and white adipose tissue (WAT) of Fischer 344 (F344) male rats using Affymetrix® RAE 230 arrays and validated by quantitative reverse transcriptase,polymerase chain reaction (qRT-PCR) on 18 genes. As expected, age had a substantial effect on transcription on both tissues, although only 21% of cardiac age-associated genes were also altered in WAT. Gene set enrichment analysis revealed coordinated small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities in aging between heart and WAT. CR had very different effects on these two tissues at the transcriptional level. In heart, very few age-associated expression changes were affected by CR, while in WAT, CR suppressed a substantial subset of the age-associated changes. Genes unaltered by aging but altered by CR were identified in WAT but not heart. Most interestingly, we identified a gene expression signature associated with mammalian target of rapamycin (mTOR) activity that was down-regulated with age but preserved by CR in both WAT and heart. In addition, lipid metabolism genes, particularly those associated with peroxisome proliferator-activated receptor , (PPAR,)-mediated adipogenesis were reduced with age but preserved with CR in WAT. These results highlight tissue-specific differences in the gene expression response to CR and support a role for CR-mediated preservation of mTOR activity and adipogenesis in aging WAT. [source]


Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway

JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
Julie Chenal
Abstract Monocarboxylate transporter 2 (MCT2) expression is up-regulated by noradrenaline (NA) in cultured cortical neurons via a putative but undetermined translational mechanism. Western blot analysis showed that p44/p42 mitogen-activated protein kinase (MAPK) was rapidly and strongly phosphorylated by NA treatment. NA also rapidly induced serine/threonine protein kinase from AKT virus (Akt) phosphorylation but to a lesser extent than p44/p42 MAPK. However, Akt activation persisted over a longer period. Similarly, NA induced a rapid and persistent phosphorylation of mammalian target of rapamycin (mTOR), a kinase implicated in the regulation of translation in the central nervous system. Consistent with activation of the mTOR/S6 kinase pathway, phosphorylation of the ribosomal S6 protein, a component of the translation machinery, could be observed upon treatment with NA. In parallel, it was found that the NA-induced increase in MCT2 protein was almost completely blocked by LY294002 (phosphoinositide 3-kinase inhibitor) as well as by rapamycin (mTOR inhibitor), while mitogen-activated protein kinase kinase and p38 MAPK inhibitors had much smaller effects. Taken together, these data reveal that NA induces an increase in neuronal MCT2 protein expression by a mechanism involving stimulation of phosphoinositide 3-kinase/Akt and translational activation via the mTOR/S6 kinase pathway. Moreover, considering the role of NA in synaptic plasticity, alterations in MCT2 expression as described in this study might represent an adaptation to face energy demands associated with enhanced synaptic transmission. [source]


Acute Alcohol Intoxication Increases REDD1 in Skeletal Muscle

ALCOHOLISM, Issue 5 2008
Charles H. Lang
Background:, The mechanism by which acute alcohol (EtOH) intoxication decreases basal muscle protein synthesis via inhibition of the Ser/Thr kinase mammalian target of rapamycin (mTOR) is poorly defined. In this regard, mTOR activity is impaired after over expression of the regulatory protein REDD1. Hence, the present study assessed the ability of REDD1 as a potential mediator of the EtOH-induced decrease in muscle protein synthesis. Methods:, The effect of acute EtOH intoxication on REDD1 mRNA and protein was determined in striated muscle of rats and mouse myocytes using an RNase protection assay and Western blotting, respectively. Other components of the mTOR signaling pathway were also assessed by immunoblotting. For comparison, REDD1 mRNA/protein was also determined in the muscle of rats chronically fed an alcohol-containing diet for 14 weeks. Results:, Intraperitoneal (IP) injection of EtOH increased gastrocnemius REDD1 mRNA in a dose- and time-dependent manner, and these changes were associated with reciprocal decreases in the phosphorylation of 4E-BP1, which is a surrogate marker for mTOR activity and protein synthesis. No change in REDD1 mRNA was detected in the slow-twitch soleus muscle or heart. Acute EtOH produced comparable increases in muscle REDD1 protein. The EtOH-induced increase in gastrocnemius REDD1 was independent of the route of EtOH administration (oral vs. IP), the nutritional state (fed vs. fasted), gender, and age of the rat. The nonmetabolizable alcohol tert -butanol increased REDD1 and the EtOH-induced increase in REDD1 was not prevented by pretreatment with the alcohol dehydrogenase inhibitor 4-methylpyrazole. In contrast, REDD1 mRNA and protein were not increased in the isolated hindlimb perfused with EtOH or in C2C12 myocytes incubated with EtOH, under conditions previously reported to decrease protein synthesis. Pretreatment with the glucocorticoid receptor antagonist RU486 failed to prevent the EtOH-induced increase in REDD1. Finally, the EtOH-induced increase in REDD1 was not associated with altered formation of the TSC1,TSC2 complex or the phosphorylation of TSC2 which is down stream in the REDD1 stress response pathway. In contradistinction to the changes observed with acute EtOH intoxication, REDD1 mRNA/protein was not changed in gastrocnemius from chronic alcohol-fed rats despite the reduction in 4E-BP1 phosphorylation. Conclusions:, These data indicate that in fast-twitch skeletal muscle (i) REDD1 mRNA/protein is increased in vivo by acute EtOH intoxication but not in response to chronic alcohol feeding, (ii) elevated REDD1 in response to acute EtOH appears due to the production of an unknown secondary mediator which is not corticosterone, and (iii) the EtOH-induced decrease in protein synthesis can be dissociated from a change in REDD1 suggesting that the induction of this protein is not responsible for the rapid decrease in protein synthesis after acute EtOH administration or for the development of alcoholic myopathy in rats fed an alcohol-containing diet. [source]


Rapamycin and CCI-779 inhibit the mammalian target of rapamycin signalling in hepatocellular carcinoma

LIVER INTERNATIONAL, Issue 1 2010
Ivan Chun-Fai Hui
Abstract Background: The mammalian target of rapamycin (mTOR), which phosphorylates p70S6K and 4EBP1 and activates the protein translation process, is upregulated in cancers and its activation may be involved in cancer development. Aims: In this study, we investigated the tumour-suppressive effects of rapamycin and its new analogue CCI-779 on hepatocellular carcinoma (HCC). Methods: Rapamycin and its new analogue CCI-779 were applied to treat HCC cells. Cell proliferation, cell cycle profile and tumorigenicity were analysed. Results: In human HCCs, we observed frequent (67%, 37/55) overexpression of mTOR transcripts using real-time reverse transcriptase-polymerase chain reaction. Upon drug treatment, PLC/PRF/5 showed the greatest reduction in cell proliferation using the colony formation assay, as compared with HepG2, Hep3B and HLE. Rapamycin was a more potent antiproliferative agent than CCI-779 in HCC cell lines. Proliferation assays by cell counting showed that the IC50 value of rapamycin was lower than that of CCI-779 in PLC/PRF/5 cells. Furthermore, flow cytometric analysis showed that both drugs could arrest HCC cells in the G1 phase but did not induce apoptosis of these cells, suggesting that these mTOR inhibitors are cytostatic rather than cytotoxic. Upon rapamycin and CCI-779 treatment, the phosphorylation level of mTOR and p70S6K in HCC cell lines was significantly reduced, indicating that both drugs can suppress mTOR activity in HCC cells. In addition, both drugs significantly inhibited the growth of xenografts of PLC/PRF/5 cells in nude mice. Conclusions: Our findings indicate that rapamycin and its clinical analogue CCI-779 possess tumour-suppressive functions towards HCC cells. [source]


mTOR inhibitors: An overview

LIVER TRANSPLANTATION, Issue 6 2001
Peter Neuhaus MD
Inhibitors of the mammalian target of rapamycin are a new class of immunosuppressants. In contrast to other macrolides, such as tacrolimus and cyclosporine A, they do not inhibit calcineurin and thus signal I of T-cell activation. By inhibiting signal III, the mechanism of action and side effects of sirolimus (rapamycin) and its derivative RAD are distinct from other immunosuppressants. Reports of synergism with cyclosporine A and tacrolimus in preclinical and clinical studies, avoidance of nephrotoxicity, and possible treatment or prevention of chronic allograft rejection are leading to high expectations for this new class of immunosuppressants. Furthermore, studies evaluating tolerance induction are being conducted. This review summarizes preclinical and clinical results published to date and exploits the future value of sirolimus and RAD for clinical transplantation. [source]


EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 9 2009
Chi-Hung Huang
Abstract In the previous studies, (,)-epigallocatechin-3-gallate (EGCG) has been shown to have anticarcinogenic effects via modulation in protein expression of p53. Using p53 positive Hep G2 and p53 negative Hep 3B cells, we found that treatment of EGCG resulted in dose-dependent inhibition of cellular proliferation, which suggests that the interaction of EGCG with p53 may not fully explain its inhibitory effect on proliferation. Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents. EGCG has multiple beneficial activities similar to those associated with CR. One key enzyme thought to be activated during CR is AMP-activated kinase (AMPK), a sensor of cellular energy levels. Here, we showed that EGCG activated AMPK in both p53 positive and negative human hepatoma cells. The activation of AMPK suppressed downstream substrates, such as mammalian target of rapamycin (mTOR) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and a general decrease in mRNA translation. Moreover, EGCG activated AMPK decreases the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Interestingly, the decision between apoptosis and growth arrest following AMPK activation is greatly influenced by p53 status. In p53 positive Hep G2 cells, EGCG blocked the progression of cell cycle at G1 phase by inducing p53 expression and further up-regulating p21 expression. However, EGCG inducted apoptosis in p53 negative Hep 3B cells. Based on these results, we have demonstrated that EGCG has a potential to be a chemoprevention and anti-lipogenesis agent for human hepatoma cells. [source]


A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma,

AMERICAN JOURNAL OF HEMATOLOGY, Issue 5 2010
Patrick B. Johnston
Everolimus is an oral antineoplastic agent that targets the raptor mammalian target of rapamycin (mTORC1). The phosphatidylinositol 3-kinase/mTOR signal transduction pathway has been demonstrated to be activated in tumor samples from patients with Hodgkin lymphoma (HL). The goal of this trial was to learn the antitumor activity and toxicity of everolimus in patients with relapsed/refractory HL. Patients were eligible if they had measurable disease, a platelet count >75,000, and an absolute neutrophil count >1,000. Patients received everolimus 10 mg PO daily. Dose reductions were allowed. Response was assessed after two and six cycles and then every three cycles until progression. Patients could remain on drug until progression or toxicity. Nineteen patients were enrolled. Median age was 37 years (range, 27,68). Patients had received a median of six prior therapies (range, 3,14) and 84% had undergone prior autologous stem cell transplant. The ORR was 47% (95% CI: 24,71%) with eight patients achieving a PR and one patient achieving a CR. The median TTP was 7.2 months. Four responders remained progression free at 12 months. Patients received a median of seven cycles of therapy. Of the 19 patients, one remains on therapy at 36 months; the others went off study because of progressive disease (16), toxicity (1), and death from infection (1). Four patients experienced a Grade 3 or higher pulmonary toxicity. Everolimus has single-agent activity in relapsed/refractory HL and provides proof-of-concept that targeting the mTOR pathway in HL is clinically relevant. Am. J. Hematol., 2010. © 2010 Wiley-Liss, Inc. [source]


The mTOR target 4E-BP1 contributes to differential protein expression during normoxia and hypoxia through changes in mRNA translation efficiency

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2008
Michaël G. Magagnin
Abstract Hypoxia causes a rapid and sustained inhibition in mRNA translation that is characterized by both a transient phosphorylation of eukaryotic initiation factor 2-alpha (eIF2,) and by inhibition of the mRNA cap binding protein eIF4E via activation of two distinct inhibitory proteins, the mammalian target of rapamycin (mTOR) target 4E-BP1 and the eIF4E transporter 4E-T. Although the importance of eIF2, phosphorylation during hypoxia has been clearly demonstrated, there is little information on the potential relevance of eIF4E regulation. We generated HeLa cells stably expressing a short hairpin interfering RNA (shRNA) against 4E-BP1 and found that despite efficient knockdown, no significant changes occurred in the overall inhibition of mRNA translation during hypoxia. However, using a proteomics approach we identified seven proteins that were exclusively expressed in the 4E-BP1 knockdown cells during both normoxic and hypoxic conditions. Further investigation of the transcriptional and translational regulation of these genes by quantitative RT-PCR indicated that the loss of 4E-BP1 causes a significant increase in the rate of protein synthesis of S100 calcium-binding protein A4 (S100A4) and transgelin 2. These 4E-BP1 regulated proteins have previously been associated with tumor cell motility, invasion and metastasis and may thus contribute to an adverse tumor phenotype. [source]