Home About us Contact | |||
Mammalian Species (mammalian + species)
Kinds of Mammalian Species Selected AbstractsIn vitro Follicle Growth: Achievements in Mammalian SpeciesREPRODUCTION IN DOMESTIC ANIMALS, Issue 1 2001R Cortvrindt The exact mechanisms regulating in vivo folliculogenesis in mammalians have only been partly unravelled. Some processes, such as the initiation of growth of primordial follicles are still poorly understood. This increases the difficulty to culture follicles in vitro as the primordial follicles will be the ultimate starting material for culture. There are important species differences in regulation and timing of maturation, which makes it difficult to transpose techniques. Only in the mouse model, live pups were born when primordial or early preantral follicles were cultured entirely in vitro. Although no systems are as yet permitting complete in vitro culture of early follicle stages in large animals or humans, parts of folliculogenesis have been successfully reproduced in vitro. This review summarizes achievements of the last years in follicle culturing starting off at several stages of development. Future applications of in vitro follicle culture include fertility preservation for humans, preservation of rare animal species and creation of oocyte banks for research. [source] Two inducible, functional cyclooxygenase-2 genes are present in the rainbow trout genomeJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007Tomo-o Ishikawa Abstract The cyclooxygenases (Cox) catalyze the initial reactions in prostanoid biosynthesis, and produce the common prostanoids precursor, PGH2. Mammalian species have two Cox isoforms; constitutively expressed cyclooxygenase-1 (Cox-1) and inducible cyclooxygenase-2 (Cox-2). Database searches suggest three Cox genes are present in many fish species. In this study, we cloned and characterized a second Cox-2 cDNA, Cox-2b, from the rainbow trout. Rainbow trout Cox-2b protein contains all the functionally important conserved amino acids for Cox enzyme activity. Moreover, the Cox-2b message contains AU-rich elements (AREs) in the 3, untranslated region (3,UTR) characteristic of inducible Cox-2 mRNAs. We took advantage of the existence of a rainbow trout cell line to demonstrate that expression from both the originally reported Cox-2 (Cox-2a) and Cox-2b genes is inducible. However, differential induction responses to alternative inducers are observed for rainbow trout Cox-2a and Cox-2b. Both Cox-2a and Cox-2b proteins expressed in COS cells are enzymatically active. Thus the rainbow trout has two functional, inducible Cox-2 genes. The zebrafish also contains two Cox-2 genes. However, genome structure analysis suggests diversion of the Cox-2a gene between zebrafish and rainbow trout. J. Cell. Biochem. 102: 1486,1492, 2007. © 2007 Wiley-Liss, Inc. [source] Synergistic Effects of Subsistence Hunting and Habitat Fragmentation on Amazonian Forest VertebratesCONSERVATION BIOLOGY, Issue 6 2001Carlos A. Peres These effects are likely to be considerably aggravated by forest fragmentation because fragments are more accessible to hunters, allow no (or very low rates of ,) recolonization from nonharvested source populations, and may provide a lower-quality resource base for the frugivore-granivore vertebrate fauna. I examined the likelihood of midsized to large-bodied bird and mammal populations persisting in Amazonian forest fragments of variable sizes whenever they continue to be harvested by subsistence hunters in the aftermath of isolation. I used data from a comprehensive compilation of game-harvest studies throughout Neotropical forests to estimate the degree to which different species and populations have been overharvested and then calculated the range of minimum forest areas required to maintain a sustainable harvest. The size distribution of 5564 Amazonian forest fragments,estimated from Landsat images of six regions of southern and eastern Brazilian Amazonia,clearly shows that these are predominantly small and rarely exceed 10 ha, suggesting that persistent overhunting is likely to drive most midsized to large vertebrate populations to local extinction in fragmented forest landscapes. Although experimental studies on this negative synergism remain largely unavailable, the prospect that increasingly fragmented Neotropical forest regions can retain their full assemblages of avian and mammalian species is unlikely. Resumen: La cacería de subsistencia tiene efectos negativos profundos sobre la diversidad de especies, la biomasa y estructura de las comunidades de vertebrados en bosques de la Amazonía que de otra forma están poco perturbadas. Estos efectos se agravan considerablemente por la fragmentación del bosque porque los fragmentos son más accesibles a los cazadores, no permiten la recolonización por poblaciones no cazadas o disminuyen las tasas de recolonizacíon y pueden proporcionar una base de recursos de menor calidad para la fauna de vertebrados frugívoro-granívoros. Examiné la posibilidad de persistencia de poblaciones de aves y mamíferos medianos a grandes en fragmentos de bosque de tamaño variable si continúan sujetos a la cacería de subsistencia como una consecuencia del aislamiento. Utilicé datos de una compilación extensiva de estudios de cacería en bosques neotropicales para estimar el grado en que diferentes especies y poblaciones han sido sobre explotadas y calculé el área de bosque minima requerida para mantener una cosecha sostensible. La distribucíon de tamaños de 5564 fragmentos de bosque amazónica, estimado a partir de imágues de Landsat de seis regiones del sur y del esté de la Amazonía brasileña indica claramente que estos fragmentós son principalmente pegueños y que rara vez exceden las lolta, lo que sugiere que la sobre cacería persistente probablemente lleve a la extincíon local de poblaciones de vertebrados de tamaño mediano a grande en paisajes boscosos fragmentados. Aunque estudios experimentales de este sinergismo negativo no están disponibles, la perspectiva de que las regiones neotropicales cada vez más fragmentadas, puedan retener las comunidades completas de aves y mamíferos poco es probable. [source] The death of cardiotonic steroid-treated cells: evidence of Na+i,K+i -independent H+i -sensitive signallingACTA PHYSIOLOGICA, Issue 1-2 2006S. N. Orlov Abstract Na/K-ATPase is the only known target of cardiotonic steroids (CTS) identified in plants, amphibians and later on in several mammalian species, including human. We focus our review on recent data implicating CTS in the tissue-specific regulation of cell survival and death. In vascular smooth muscle cells, CTS inhibited cell death triggered by apoptotic stimuli via a novel Na+i -mediated, Ca2+i -independent mechanism of expression of antiapoptotic genes, including mortalin. In contrast, exposure to CTS in vascular endothelial and renal epithelial cells led to cell death, showing combined markers of apoptosis and necrosis. This mode of cell death, termed oncosis, is caused by CTS interaction with Na/K-ATPase but is independent of the inhibition of Na/K-ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. The intermediates of intracellular signalling involved in Na+i, K+i -independent oncosis of CTS-treated cells remain unknown. Recently, we found that this mode of cell death can be protected by modest intracellular acidification via the expression of H+i -sensitive genes. The molecular origin of intracellular Na+ and H+ sensor involvement in the development of apoptosis and oncosis is currently under investigation. [source] Preimplantation development of mouse: A view from cellular behaviorDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2010Toshihiko Fujimori A mature animal body contains a variety of different cell types, and these cells are distributed in a well-organized fashion along the body axes. One of the major questions in developmental biology is how cells acquire different characteristics. In addition, it is important to understand how the embryo forms the body axes and how cells are allocated along these axes during development. Among mammalian species, the molecular mechanisms that regulate embryonic development have been well analyzed and characterized in mice. Here, mouse preimplantation embryonic development is briefly summarized and our current understanding of this complex process based on recent observations is reviewed. [source] Human and pig SRY 5, flanking sequences can direct reporter transgene expression to the genital ridge and to migrating neural crest cellsDEVELOPMENTAL DYNAMICS, Issue 3 2006Alexandre Boyer Abstract Mechanisms for sex determination vary greatly between animal groups, and include chromosome dosage and haploid,diploid mechanisms as seen in insects, temperature and environmental cues as seen in fish and reptiles, and gene-based mechanisms as seen in birds and mammals. In eutherian mammals, sex determination is genetic, and SRY is the Y chromosome located gene representing the dominant testes determining factor. How SRY took over this function from ancestral mechanisms is not known, nor is it known what those ancestral mechanisms were. What is known is that SRY is haploid and thus poorly protected from mutations, and consequently is poorly conserved between mammalian species. To functionally compare SRY promoter sequences, we have generated transgenic mice with fluorescent reporter genes under the control of various lengths of human and pig SRY 5, flanking sequences. Human SRY 5, flanking sequences (5 Kb) supported reporter transgene expression within the genital ridge of male embryos at the time of sex determination and also supported expression within migrating truncal neural crest cells of both male and female embryos. The 4.6 Kb of pig SRY 5, flanking sequences supported reporter transgene expression within the male genital ridge but not within the neural crest; however, 2.6 Kb and 1.6 Kb of pig SRY 5, flanking sequences retained male genital ridge expression and now supported extensive expression within cells of the neural crest in embryos of both sexes. When 2 Kb of mouse SRY 5, flanking sequences (,3 to ,1 Kb) were placed in front of the 1.6 Kb of pig SRY 5, flanking sequences and this transgene was introduced into mice, reporter transgene expression within the male genital ridge was retained but neural crest expression was lost. These observations suggest that SRY 5, flanking sequences from at least two mammalian species contain elements that can support transgene expression within cells of the migrating neural crest and that additional SRY 5, flanking sequences can extinguish this expression. Developmental Dynamics 235:623,632, 2006. © 2006 Wiley-Liss, Inc. [source] Hedgehog and Fgf signaling pathways regulate the development of tphR -expressing serotonergic raphe neurons in zebrafish embryosDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2004H. Teraoka Abstract Serotonin (5HT) plays major roles in the physiological regulation of many behavioral processes, including sleep, feeding, and mood, but the genetic mechanisms by which serotonergic neurons arise during development are poorly understood. In the present study, we have investigated the development of serotonergic neurons in the zebrafish. Neurons exhibiting 5HT-immunoreactivity (5HT-IR) are detected from 45 h postfertilization (hpf) in the ventral hindbrain raphe, the hypothalamus, pineal organ, and pretectal area. Tryptophan hydroxylases encode rate-limiting enzymes that function in the synthesis of 5HT. As part of this study, we cloned and analyzed a novel zebrafish tph gene named tphR. Unlike two other zebrafish tph genes (tphD1 and tphD2), tphR is expressed in serotonergic raphe neurons, similar to tph genes in mammalian species. tphR is also expressed in the pineal organ where it is likely to be involved in the pathway leading to synthesis of melatonin. To better understand the signaling pathways involved in the induction of the serotonergic phenotype, we analyzed tphR expression and 5HT-IR in embryos in which either Hh or Fgf signals are abrogated. Hindbrain 5HT neurons are severely reduced in mutants lacking activity of either Ace/Fgf8 or the transcription factor Noi/Pax2.1, which regulates expression of ace/fgf8, and probably other genes encoding signaling proteins. Similarly, serotonergic raphe neurons are absent in embryos lacking Hh activity confirming a conserved role for Hh signals in the induction of these cells. Conversely, over-activation of the Hh pathway increases the number of serotonergic neurons. As in mammals, our results are consistent with the transcription factors Nk2.2 and Gata3 acting downstream of Hh activity in the development of serotonergic raphe neurons. Our results show that the pathways involved in induction of hindbrain serotonergic neurons are likely to be conserved in all vertebrates and help establish the zebrafish as a model system to study this important neuronal class. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 275,288, 2004 [source] Cross-species investigations of prenatal experience, hatching behavior, and postnatal behavioral lateralityDEVELOPMENTAL PSYCHOBIOLOGY, Issue 2 2001Michael Bernard Casey Abstract Turning biases have been reported in some mammalian species, but less is known about such biases in nonmammalians. This study investigated turning biases in domestic chicks, bobwhite and Japanese quail, leopard geckos, and snapping turtles. Domestic chicks (white leghorn and bantam) and bobwhite quail demonstrate strong group laterality. Japanese quail chicks, snapping turtles, and leopard geckos demonstrate no significant group bias. Results are discussed with regard to differences in embryonic experience, hatching behavior, and postnatal environment. © 2001 John Wiley & Sons, Inc. Dev Psychobiol 39: 84,91, 2001 [source] The characterization of Tasmanian devil Sarcophilius harrisii pelage fibres and their associated lipidsACTA ZOOLOGICA, Issue 4 2009J. S. Church Abstract The Tasmanian devil (Sarcophilius harrisii) is the largest living marsupial carnivore left on Earth. In this paper we report the results of the first thorough characterization of the keratin fibres comprising the Tasmanian devil pelage. The fibre's morphology, structure, composition and surface have been investigated. The results have been compared with those of a number of other mammalian species including carnivores and herbivores. The fibres structure was found to be consistent with that expected for a keratin fibre. From the results of the bound lipid analysis it can be concluded that the Tasmanian devil is a typical mammal in which the 21-carbon atom anteiso branched fatty acid is the predominant bound fatty acid. This is consistent with the Tasmanian devil's position in the mammalian phylogenetic tree. The amino acid analysis places the devil in line with other carnivores. The high cystine and proline content may correlate with the Tasmanian devil's diet which is rich in muscle and collagen proteins. [source] An ecological law and its macroecological consequences as revealed by studies of relationships between host densities and parasite prevalenceECOGRAPHY, Issue 3 2001Per ArnebergArticle first published online: 30 JUN 200 Epidemiological models predict a positive relationship between host population density and abundance of macroparasites. Here I test these by a comparative study. I used data on communities of four groups of parasites inhabiting the gastrointestinal tract of mammals, nematodes of the orders Oxyurida, Ascarida, Enoplida and Spirurida, respectively. The data came from 44 mammalian species and represent examination of 16 886 individual hosts. I studied average prevalence of all nematodes within an order in a host species, a measure of community level abundance, and considered the potential confounding effects of host body weight, fecundity, age at maturity and diet. Host population density was positively correlated with parasite prevalence within the order Oxyurida, where all species have direct life cycles. Considering the effects of other variables did not change this. This supports the assumption that parasite transmission rate generally is a positive function of host population density. It also strengthens the hypothesis that host densities generally act as important determinants of species richness among directly transmitted parasites and suggests that negative influence of such parasites on host population growth rate increase with increasing host population density among host species. Within the other three nematode orders, where a substantial number of the species have indirect life cycles, no relationships between prevalence and host population density were seen. Again, considering the effects of other variables did not affect this conclusion. This suggests that host population density is a poor predictor of species richness of indirectly transmitted parasites and that effects of such parasites on host population dynamics do not scale with host densities among species of hosts. [source] Feasibility of conducting the micronucleus test in circulating erythrocytes from different mammalian species: An anatomical perspectiveENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2006Ion Udroiu Abstract The in vivo mammalian micronucleus test can be conducted easily on peripheral blood samples since the maturation of erythrocytes involves the loss of the major nucleus. In addition, mature erythrocytes are relatively long-lived, so that the test potentially can detect genotoxic damage caused by chronic exposures. However, some species have spleens that remove micronuclei from the peripheral circulation, making such measurements problematical. This report summarises haematological and mutagenesis studies dealing with this subject and provides an anatomical interpretation of the phenomenon. Anatomical features can be used to identify those species in which micronuclei are removed by the spleen. Environ. Mol. Mutagen., 2006. © 2006 Wiley-Liss, Inc. [source] Equine clinical genomics: A clinician's primerEQUINE VETERINARY JOURNAL, Issue 7 2010M. M. BROSNAHAN Summary The objective of this review is to introduce equine clinicians to the rapidly evolving field of clinical genomics with a vision of improving the health and welfare of the domestic horse. For 15 years a consortium of veterinary geneticists and clinicians has worked together under the umbrella of The Horse Genome Project. This group, encompassing 22 laboratories in 12 countries, has made rapid progress, developing several iterations of linkage, physical and comparative gene maps of the horse with increasing levels of detail. In early 2006, the research was greatly facilitated when the US National Human Genome Research Institute of the National Institutes of Health added the horse to the list of mammalian species scheduled for whole genome sequencing. The genome of the domestic horse has now been sequenced and is available to researchers worldwide in publicly accessible databases. This achievement creates the potential for transformative change within the horse industry, particularly in the fields of internal medicine, sports medicine and reproduction. The genome sequence has enabled the development of new genome-wide tools and resources for studying inherited diseases of the horse. To date, researchers have identified 11 mutations causing 10 clinical syndromes in the horse. Testing is commercially available for all but one of these diseases. Future research will probably identify the genetic bases for other equine diseases, produce new diagnostic tests and generate novel therapeutics for some of these conditions. This will enable equine clinicians to play a critical role in ensuring the thoughtful and appropriate application of this knowledge as they assist clients with breeding and clinical decision-making. [source] Production of biologically active equine interleukin 12 through expression of p35, p40 and single chain IL-12 in mammalian and baculovirus expression systemsEQUINE VETERINARY JOURNAL, Issue 7 2001E. L. J. McMONAGLE Summary Interleukin-12 (IL-12) is a key cytokine in the development of cell-mediated immune responses. Bioactive IL-12 is a heterodimeric cytokine composed of disulphide linked p35 and p40 subunits. The aim of this study was to verify biologically activity of the products expressed from equine interleukin-12 (IL-12) p35 and p40 cDNAs and to establish whether equine IL-12 could be expressed as a p35/p40 fusion polypeptide, as has been reported for IL-12a of several mammalian species. We report production of equine IL-12 through expression of p35 and p40 subunits in mammalian and insect cells and of a p35:p40 fusion polypeptide in mammalian cells. Conditioned medium recovered from cultures transiently transfected with constructs encoding equine p35 and p40 subunits or single chain IL-12 enhanced IFN-, production in cells derived from equine lymph nodes. Preincubation of IFN-, inducing preparations with anti-p40 monoclonal antibody resulted in a significant decrease in IFN-, induction capacity. Medium recovered from p35 and p40-expressing baculovirus infected cultures enhanced target cell IFN-, production and proliferation. Experimental studies in mice and other animals have revealed a therapeutic benefit of IL-12 in cancer, inflammatory and infectious disease and an adjuvant effect in prophylactic regimes. Production of a bioactive species-specific IL-12 is a first step towards an investigation of its potential application in equine species. [source] Age Differences in the Responses to Adult and Juvenile Alarm Calls by Bonnet Macaques (Macaca radiata)ETHOLOGY, Issue 2 2000Uma Ramakrishnan This study examined the differential responses to alarm calls from juvenile and adult wild bonnet macaques (Macaca radiata) in two parks in southern India. Field studies of several mammalian species have reported that the alarm vocalizations of immature individuals are often treated by perceivers as less provocative than those of adults. This study documents such differences in response using field-recorded playbacks of juvenile and adult alarm vocalizations. To validate the use of playback vocalizations as proxies of natural calls, we compared the responses of bonnet macaques to playbacks of alarm vocalizations with responses engendered by natural alarm vocalizations. We found that the frequency of flight, latency to flee, and the frequency of scanning to vocalization playbacks and natural vocalizations were comparable, thus supporting the use of playbacks to compare the effects of adult and juvenile calls. Our results showed that adult alarm calls were more provocative than juvenile alarm calls, inducing greater frequencies of flight with faster reaction times. Conversely, juvenile alarm calls were more likely to engender scanning by adults, a result interpreted as reflecting the lack of reliability of juvenile calls. Finally, we found age differences in flight behavior to juvenile alarm calls and to playbacks of motorcycle engine sounds, with juveniles and subadults more likely to flee than adults after hearing such sounds. These findings might reflect an increased vulnerability to predators or a lack of experience in young bonnet macaques. [source] Paralog of the formylglycine-generating enzyme , retention in the endoplasmic reticulum by canonical and noncanonical signalsFEBS JOURNAL, Issue 6 2008Santosh Lakshmi Gande Formylglycine-generating enzyme (FGE) catalyzes in newly synthesized sulfatases the oxidation of a specific cysteine residue to formylglycine, which is the catalytic residue required for sulfate ester hydrolysis. This post-translational modification occurs in the endoplasmic reticulum (ER), and is an essential step in the biogenesis of this enzyme family. A paralog of FGE (pFGE) also localizes to the ER. It shares many properties with FGE, but lacks formylglycine-generating activity. There is evidence that FGE and pFGE act in concert, possibly by forming complexes with sulfatases and one another. Here we show that human pFGE, but not FGE, is retained in the ER through its C - terminal tetrapeptide PGEL, a noncanonical variant of the classic KDEL ER-retention signal. Surprisingly, PGEL, although having two nonconsensus residues (PG), confers efficient ER retention when fused to a secretory protein. Inducible coexpression of pFGE at different levels in FGE-expressing cells did not significantly influence the kinetics of FGE secretion, suggesting that pFGE is not a retention factor for FGE in vivo. PGEL is accessible at the surface of the pFGE structure. It is found in 21 mammalian species with available pFGE sequences. Other species carry either canonical signals (eight mammals and 26 nonmammals) or different noncanonical variants (six mammals and six nonmammals). Among the latter, SGEL was tested and found to also confer ER retention. Although evolutionarily conserved for mammalian pFGE, the PGEL signal is found only in one further human protein entering the ER. Its consequences for KDEL receptor-mediated ER retrieval and benefit for pFGE functionality remain to be fully resolved. [source] Analysis of the NADH-dependent retinaldehyde reductase activity of amphioxus retinol dehydrogenase enzymes enhances our understanding of the evolution of the retinol dehydrogenase familyFEBS JOURNAL, Issue 14 2007Diana Dalfó In vertebrates, multiple microsomal retinol dehydrogenases are involved in reversible retinol/retinal interconversion, thereby controlling retinoid metabolism and retinoic acid availability. The physiologic functions of these enzymes are not, however, fully understood, as each vertebrate form has several, usually overlapping, biochemical roles. Within this context, amphioxus, a group of chordates that are simpler, at both the functional and genomic levels, than vertebrates, provides a suitable evolutionary model for comparative studies of retinol dehydrogenase enzymes. In a previous study, we identified two amphioxus enzymes, Branchiostoma floridae retinol dehydrogenase 1 and retinol dehydrogenase 2, both candidates to be the cephalochordate orthologs of the vertebrate retinol dehydrogenase enzymes. We have now proceeded to characterize these amphioxus enzymes. Kinetic studies have revealed that retinol dehydrogenase 1 and retinol dehydrogenase 2 are microsomal proteins that catalyze the reduction of all- trans -retinaldehyde using NADH as cofactor, a remarkable combination of substrate and cofactor preferences. Moreover, evolutionary analysis, including the amphioxus sequences, indicates that Rdh genes were extensively duplicated after cephalochordate divergence, leading to the gene cluster organization found in several mammalian species. Overall, our data provide an evolutionary reference with which to better understand the origin, activity and evolution of retinol dehydrogenase enzymes. [source] DNA methylation variation in cloned miceGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2001Jun Ohgane Abstract Summary: Mammalian cloning has been accomplished in several mammalian species by nuclear transfer. However, the production rate of cloned animals is quite low, and many cloned offspring die or show abnormal symptoms. A possible cause of the low success rate of cloning and abnormal symptoms in many cloned animals is the incomplete reestablishment of DNA methylation after nuclear transfer. We first analyzed tissue-specific methylation patterns in the placenta, skin, and kidney of normal B6D2F1 mice. There were seven spots/CpG islands (0.5% of the total CpG islands detected) methylated differently in the three different tissues examined. In the placenta and skin of two cloned fetuses, a total of four CpG islands were aberrantly methylated or unmethylated. Interestingly, three of these four loci corresponded to the tissue-specific loci in the normal control fetuses. The extent of aberrant methylation of genomic DNA varied between the cloned animals. In cloned animals, aberrant methylation occurred mainly at tissue-specific methylated loci. Individual cloned animals have different methylation aberrations. In other words, cloned animals are by no means perfect copies of the original animals as far as the methylation status of genomic DNA is concerned. genesis 30:45,50, 2001. © 2001 Wiley-Liss, Inc. [source] Rhythmic hippocampal slow oscillation characterizes REM sleep in humansHIPPOCAMPUS, Issue 6 2001Róbert Bódizs Abstract Hippocampal rhythmic slow activity (RSA) is a well-known electrophysiological feature of exploratory behavior, spatial cognition, and rapid eye movement (REM) sleep in several mammalian species. Recently, RSA in humans during spatial navigation was reported, but systematic data regarding human REM sleep are lacking. Using mesio-temporal corticography with foramen ovale electrodes in epileptic patients, we report the presence of a 1.5,3-Hz synchronous rhythmic hippocampal oscillation seemingly specific to REM sleep. This oscillation is continuous during whole REM periods, is clearly observable by visual inspection, and appears in tonic and phasic REM sleep episodes equally. Quantitative analysis proved that this 1.5,3-Hz frequency band significantly differentiates REM sleep from waking and slow-wake sleep (SWS). No other frequency band proved to be significant or showed this high rhythmicity. Even in temporo-lateral surface recordings, although visually much less striking, the relative power of the 1.5,3-Hz frequency band differentiates REM sleep from other states with statistical significance. This could mean that the 1.5,3-Hz hippocampal RSA spreads over other cortical areas in humans as in other mammals. We suggest that this oscillation is the counterpart of the hippocampal theta of mammalian REM sleep, and that the 1.5,3-Hz delta EEG activity is a basic neurophysiological feature of human REM sleep. Hippocampus 2001;11:747,753. © 2001 Wiley-Liss, Inc. [source] Three novel thiopurine S-methyltransferase allelic variants (TPMT*20, *21, *22) , association with decreased enzyme function,,HUMAN MUTATION, Issue 9 2006Elke Schaeffeler Abstract The genetic polymorphism of the thiopurine S-methyltransferase, TPMT, comprises at least 21 alleles causing three distinct drug metabolism phenotypes termed normal/high, intermediate, and deficient methylators. In consequence, adverse drug reactions may occur if standard doses of thiopurines are applied routinely. Genetic prediction of the methylator phenotype as a basis for dose selection requires the extensive knowledge of single nucleotide polymorphisms occurring naturally in the population. Here we describe three novel missense variants in the TPMT gene which were associated with an intermediate red blood cell TPMT activity in three Caucasians. The following alleles were designated: TPMT*20 (c.712A>G), *21 (c.205C>G), and *22 (c.488G>C). No further genetic variations in remaining coding regions as well as the 5,flanking region of TPMT were identified. These sequence variants are present in highly conserved nucleotide positions of the TPMT gene throughout various mammalian species and in zebra fish, and are predicted to be intolerant when the functional consequences of variations were analyzed using SIFT (Sorting Intolerant From Tolerant) algorithm. In Caucasians the occurrence of these genetic variants appears to be extremely rare since none of these alleles were identified in a randomly selected control population of 1048 individuals. © 2006 Wiley-Liss, Inc. [source] The development of psychopathology from infancy to adulthood: The mysterious unfolding of disturbance in timeINFANT MENTAL HEALTH JOURNAL, Issue 3 2003Peter Fonagy A model for the development of this mechanism is offered as well as evidence for it from five areas: (1) the nature of the association of early attachment and later cognitive functioning, (2) accumulating evidence for the association between secure attachment and the facility with which internal states are understood and represented, (3) the limited predictive value of early attachment classification, (4) the studies of the biological functions of attachment in other mammalian species, and (5) factor analytic studies of adult attachment scales that suggest the independence of attachment type and attachment quality. The author tentatively proposes that attachment in infancy has the primary evolutionary function of generating a mind capable of inferring and attributing causal motivational and epistemic mind states, and through these arriving at a representation of the self in terms of a set of stable and generalized intentional attributes thus ensuring social collaboration, whereas attachment in adulthood serves the evolutionary function of protecting the self representation from the impingements that social encounters inevitably create. Severe personality pathology arises when the psychological mechanism of attachment is distorted or dysfunctional and cannot fulfill its biological function of preserving the intactness of self representations. ©2003 Michigan Association for Infant Mental Health. [source] The distribution, metabolism and function of creatine in the male mammalian reproductive tract: a reviewINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2000N. P. Moore Creatine is widely distributed throughout the male reproductive system in several mammalian species, and proteins involved in its metabolism and transport have been reported in a number of cell and tissue types. Creatine is synthesized within some organs, incorporating nitrogen from amino acid metabolism. Although creatine metabolism is obligatory for the motility of sea urchin spermatozoa, this does not appear to be the case for mammals. The possible functions of creatine within the reproductive tract are discussed. [source] Re-utilization of Schwann cells during ingrowth of ventral root afferents in perinatal kittensJOURNAL OF ANATOMY, Issue 2 2008A. Ingela M. Nilsson Remahl Abstract Ventral roots in all mammalian species, including humans, contain significant numbers of unmyelinated axons, many of them afferents transmitting nociceptive signals from receptive fields in skin, viscera, muscles and joints. Observations in cats indicate that these afferents do not enter the spinal cord via the ventral root, but rather turn distally and enter the dorsal root. Some unmyelinated axons are postganglionic autonomic efferents that innervate blood vessels of the root and the pia mater. In the feline L7 segment, a substantial proportion of unmyelinated axons are not detectable until late in perinatal development. The mechanisms inducing this late ingrowth, and the recruitment of Schwann cells (indispensable, at this stage, for axonal survival and sustenance), are unknown. We have counted axons and Schwann cells in both ends of the L7 ventral root in young kittens and made the following observations. (1) The total number of axons detectable in the root increased throughout the range of investigated ages. (2) The number of myelinated axons was similar in the root's proximal and distal ends. The increased number of unmyelinated axons with age is thus due to increased numbers of small unmyelinated axons. (3) The number of separated large probably promyelin axons was about the same in the proximal and distal ends of the root. (4) Schwann cells appeared to undergo redistribution, from myelinated to unmyelinated axons. (5) During redistribution of Schwann cells they first appear as aberrant Schwann cells and then become endoneurial X-cells temporarily free of axonal contact. We hypothesize that unmyelinated axons invade the ventral root from its distal end, that this ingrowth is particularly intense during the first postnatal month and that disengaged Schwann cells, eliminated from myelinated motoneuron axons, provide the ingrowing axons with structural and trophic support. [source] Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patternsJOURNAL OF ANATOMY, Issue 3 2007Maria A. Serrat Abstract The developmental anatomy of the proximal femur is complex. In some mammals, including humans, the femoral head and greater trochanter emerge as separate ossification centres within a common chondroepiphysis and remain separate throughout ontogeny. In other species, these secondary centres coalesce within the chondroepiphysis to form a single osseous epiphysis much like the proximal humerus. These differences in femoral ontogeny have not been previously addressed, yet are critical to an understanding of femoral mineralization and architecture across a wide range of mammals and may have key implications for understanding and treating hip abnormalities in humans. We evaluated femora from 70 mammalian species and categorized each according to the presence of a ,separate' or ,coalesced' proximal epiphysis based on visual assessment. We found that ossification type varies widely among mammals: taxa in the ,coalesced' group include marsupials, artiodactyls, perissodactyls, bats, carnivores and several primates, while the ,separate' group includes hominoids, many rodents, tree shrews and several marine species. There was no clear relationship to body size, phylogeny or locomotion, but qualitative and quantitative differences between the groups suggest that ossification type may be primarily an artefact of femoral shape and neck length. As some osseous abnormalities of the human hip appear to mimic the normal morphology of species with coalesced epiphyses, these results may provide insight into the aetiology and treatment of human hip disorders such as femoroacetabular impingement and early-onset osteoarthritis. [source] Comparative aspects of the inner root sheath in adult and developing hairs of mammals in relation to the evolution of hairsJOURNAL OF ANATOMY, Issue 3 2004Lorenzo AlibardiArticle first published online: 17 SEP 200 Abstract The inner root sheath (IRS) allows the exit of hairs through the epidermal surface. The fine structure of monotreme and marsupial IRS and trichohyalin is not known. Using electron microscopy and immunocytochemistry, the localization of trichohyalin and transglutaminase have been studied in monotreme and marsupial hairs, and compared with trichohyalin localization in placental hairs. Trichohyalin in all mammalian species studied here is recognized by a polyclonal antibody against sheep trichohyalin. This generalized immunoreactivity suggests that common epitopes are present in trichohyalin across mammals. In differentiating IRS cells, trichohyalin granules of variable dimensions are composed of an immunolabelled amorphous matrix associated with a network of 10,12-nm-thick keratin filaments. Transglutaminase labelling is present among keratin bundles and trichohyalin granules, and in condensed nuclei of terminally differentiating cells of the inner root sheath. The IRS in monotreme hairs is multistratified but lacks a distinguishable Henle layer. Cornification of IRS determines the sculpturing of the fibre cuticle and later shedding from the follicle for the exit of the hair fibre on the epidermal surface. It is hypothesized that the stratification of IRS in Henle, Huxley and IRS cuticle layers is derived from a simpler organization, like that present in the IRS of monotremes. The IRS is regarded as a localized shedding/sloughing layer needed for the exit of hairs without injury to the epidermis. The formation of the IRS during the evolution of mammalian epidermis allowed the physiological exit of hairs produced inside the skin. The peculiar morphogenesis of hairs in possible primitive skins, such as those of the monotremes (mammals with some reptilian characteristics) or the tails of some rodents (a scaled skin), may elucidate the evolution of hairs. In monotreme and rodent tail skin, the dermal papilla remains localized on the proximal side of the hair peg and forms a hair placode with bilateral symmetry. The papilla is progressively surrounded by the down-growing hair peg until a dermal papilla with radial symmetry is formed. It is speculated that the progressive reduction of the extended dermal papilla of reptilian scales into small and deep papillae of therapsid reptiles produced hairs in mammals. [source] A comparative study of mammalian tracheal mucous glandsJOURNAL OF ANATOMY, Issue 3 2000H. K. CHOI We have compared the distribution, numbers and volume of mucous glands in the tracheas of 11 mammalian species. No glands were present in the rabbit. The mouse only contained glands at the border between the trachea and larynx. In the rat, glands were commonest in the cephalad third of the trachea, but on average were much scarcer than in the larger species. Between species, there was a significant correlation between airway diameter and gland volume per unit surface area, suggesting that the rate of deposition of inhaled particles may increase in large airways. In the ventral portion of the trachea of about half the species, the glands were concentrated between the cartilaginous rings; in others they were evenly distributed over and between the rings. In most species in which the trachealis muscle attached to the internal surface of the cartilaginous rings, the glands were external to the muscle. In all species in which the muscle attached to the external surface of the cartilaginous rings, the glands were internal to the muscle. In the ox, goat, dog and sheep, the volume of glands per unit tracheal surface area was markedly greater in the ventral than the dorsal aspect of the trachea. The reverse was true of the pig. In humans, gland density in the 2 regions was similar. The frequency of gland openings was determined in the ox, goat, pig, dog and sheep tracheas, and ranged from 0.3 per mm2 in the dorsal portion of the sheep trachea to 1.5 per mm2 in the ventral portion of the ox trachea. For these 5 species, the volume of gland acini per unit luminal surface area varied linearly with the numbers of gland openings, with the volume of individual glands being constant at , 120 nl. [source] Cloning, sequencing, and characterization of CYP1A1 cDNA from leaping mullet (Liza Saliens) liver and implications for the potential functions of its conserved amino acidsJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 5 2001Alaattin Sen Abstract A 2,037 bp CYP1A1 cDNA (GenBank AF072899) was cloned through screening of a ,ZipLox cDNA library constructed from the liver of a leaping mullet (Liza saliens) fish captured from Izmir Bay on the Aegean coast of Turkey using rainbow trout CYP1A1 cDNA as a probe. This clone has a 130 bp 5'-flanking region, a 1,563 bp open reading frame (ORF) encoding a 521-amino acid protein (58,972 Da), and a 344 bp 3'-untranslated region without a poly (A) tail. Alignment of the deduced amino acids of CYP1A1 cDNAs showed 58% and 69,96% identities with human and 12 other fish species, respectively. Southern blot analysis suggested that this CYP1A1 cDNA was from a single-copy gene. Based on the comparison with CYP1A1 genes reported for fish and mammals, the leaping mullet CYP1A1 gene is probably split into 7 exons. The intron insertion sites were predicted. Alignment of the CYP1A1 cDNA encoded amino acids from 13 fish and 7 mammalian species disclosed differences in highly conserved amino acids between aquatic and land vertebrates. The possible associated secondary structure; conserved motifs and substrate-binding sites were discussed. The phylogenetic relationships of CYP1A1s among 13 fish species were analyzed by a distance method. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:243,255, 2001 [source] New molecular markers of early and progressive CJD brain infectionJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2004Zhi Yun Lu Abstract Transmissible spongiform encephalopathies (TSEs), including human Creutzfeldt,Jakob disease (CJD), are caused by a related group of infectious agents that can be transmitted to many mammalian species. Because the infectious component of TSE agents has not been identified, we examined myeloid cell linked inflammatory pathways to find if they were activated early in CJD infection. We here identify a specific set of transcripts in CJD infected mouse brains that define early and later stages of progressive disease. Serum amyloid A3 and L-selectin mRNAs were elevated as early as 20 days after intracerebral inoculation. Transcripts of myeloid cell recruitment factors such as MIP-1,, MIP-1,, and MCP1, as well as IL1, and TNF, were upregulated >10 fold between 30 and 40 days, well before prion protein (PrP) abnormalities that begin only after 80 days. At later stages of symptomatic neurodegenerative disease (100,110 days), a selected set of transcripts rose by as much as 100 fold. In contrast, normal brain inoculated controls showed no similar sequential changes. In sum, rapid and simple PCR tests defined progressive stages of CJD brain infection. These markers may also facilitate early diagnosis of CJD in accessible peripheral tissues such as spleen and blood. Because some TSE strains can differentially target particular cell types such as microglia, several of these molecular changes may also distinguish specific agent strains. The many host responses to the CJD agent challenge the assumption that the immune system does not recognize TSE infections because these agents are composed only of the host's own PrP. © 2004 Wiley-Liss, Inc. [source] Androgen dynamics in the context of children's peer relations: an examination of the links between testosterone and peer victimizationAGGRESSIVE BEHAVIOR, Issue 1 2009Tracy Vaillancourt Abstract Testosterone levels have been shown to decrease in the face of social defeat in several mammalian species. Among humans, the loss of social status has been studied primarily in the context of athletic competition, with winners having higher testosterone levels than losers. This study examined testosterone levels in relation to peer victimization (bullying) in a sample of 151 boys and girls aged 12,13. Statistically controlling for age and pubertal status, results indicated that on average verbally bullied girls produced less testosterone and verbally bullied boys produced more testosterone than their nonbullied counterparts. Similar trends were evident comparing social and physical bullying with testosterone. Sex differences are discussed in terms of empirically validated differences in coping styles, as girls tend to internalize, whereas boys tend to externalize, their abuse. Aggr. Behav. 35:103,113, 2009. © 2008 Wiley-Liss, Inc. [source] Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber)AGING CELL, Issue 4 2010Sitai Liang Summary The naked mole-rat (NMR, Heterocephalus glaber) is a long-lived mammal in which spontaneous cancer has not been observed. To investigate possible mechanisms for cancer resistance in this species, we studied the properties of skin fibroblasts from the NMR following transduction with oncogenes that cause cells of other mammalian species to form malignant tumors. Naked mole-rat fibroblasts were transduced with a retrovirus encoding SV40 large T antigen and oncogenic RasG12V. Following transplantation of transduced cells into immunodeficient mice, cells rapidly entered crisis, as evidenced by the presence of anaphase bridges, giant cells with enlarged nuclei, multinucleated cells, and cells with large number of chromosomes or abnormal chromatin material. In contrast, similarly transduced mouse and rat fibroblasts formed tumors that grew rapidly without crisis. Crisis was also observed after > 40 population doublings in SV40 TAg/Ras-expressing NMR cells in culture. Crisis in culture was prevented by additional infection of the cells with a retrovirus encoding hTERT (telomerase reverse transcriptase). SV40 TAg/Ras/hTERT-expressing NMR cells formed tumors that grew rapidly in immunodeficient mice without evidence of crisis. Crisis could also be induced in SV40 TAg/Ras-expressing NMR cells by loss of anchorage, but after hTERT transduction, cells were able to proliferate normally following loss of anchorage. Thus, rapid crisis is a response of oncogene-expressing NMR cells to growth in an in vivo environment, which requires anchorage independence, and hTERT permits cells to avoid crisis and to achieve malignant tumor growth. The unique reaction of NMR cells to oncogene expression may form part of the cancer resistance of this species. [source] Increasing longevity through caloric restriction or rapamycin feeding in mammals: common mechanisms for common outcomes?AGING CELL, Issue 5 2009Lynne S. Cox Summary Significant extension of lifespan in important mammalian species is bound to attract the attention not only of the aging research community, but also the media and the wider public. Two recent papers published by Harrison et al. (2009) in Nature and by Colman et al. (2009) in Science report increased longevity of mice fed with rapamycin and of rhesus monkeys undergoing caloric restriction, respectively. These papers have generated considerable debate in the aging community. Here we assess what is new about these findings, how they fit with our knowledge of lifespan extension from other studies and what prospects this new work holds out for improvements in human longevity and human health span. [source] |