Home About us Contact | |||
Mammalian Organisms (mammalian + organism)
Selected AbstractsBiodegradable Xylitol-Based Polymers,ADVANCED MATERIALS, Issue 10 2008Joost P. Bruggeman Synthetic polymers composed of metabolites endogenous to the mammalian organism are designed. The design is based on the monomer xylitol, which possesses a wide range of physical properties that are biologically relevant. Xylitol-based hydrogels and elastomers are biocompatible in vitro and in vivo, compared to the prevalent synthetic polymer poly(L-lactic- co - glycolic acid) (PLGA). It furthermore provides a platform to tune mechanical properties, degradation profiles, and cell attachment. [source] Behavioural and physiological characterization of inbred mouse strains: prospects for elucidating the molecular mechanisms of mammalian learning and memoryGENES, BRAIN AND BEHAVIOR, Issue 2 2002P. V. Nguyen With the advent of recombinant DNA methodology, it has become possible to dissect the molecular mechanisms of complex traits, including brain function and behaviour. The increasing amount of available information on the genomes of mammalian organisms, including our own, has facilitated this research. The present review focuses on a somewhat neglected area of genetics, one that involves the study of inbred mouse strains. It is argued that the use of inbred mice is complementary to transgenic approaches in the analysis of molecular mechanisms of complex traits. Whereas transgenic technology allows one to manipulate a single gene and investigate the in vivo effects of highly specific, artificially induced mutations, the study of inbred mouse strains should shed light on the roles of naturally occurring allelic variants in brain function and behaviour. Systematic characterization of the behavioural, electrophysiological, neurochemical, and neuroanatomical properties of a large number of inbred strains is required to elucidate mechanisms of mammalian brain function and behaviour. In essence, a ,mouse phenome' project is needed, entailing the construction of databases to investigate possible causal relationships amongst the phenotypical characteristics. This review focuses on electrophysiological and behavioural characterization of mouse strains. Nevertheless, it is emphasized that the full potential of the analysis of inbred mouse strains may be attained if techniques of numerous disciplines, including gene expression profiling, biochemical analysis, and quantitative trait loci (QTL) mapping, to name but a few, are also included. [source] Contribution of mass spectrometry to the study of the Maillard reaction in foodMASS SPECTROMETRY REVIEWS, Issue 4 2005Laurent B. Fay Abstract The Maillard reaction or non-enzymatic browning corresponds to a set of reactions occurring between amines and carbonyl compounds, especially reducing sugars. The Maillard reaction is known to occur in heated, dried, or stored foods and in vivo in mammalian organisms. In food, the Maillard reaction is responsible for changes in colour, flavor, and nutritive value but also for the formation of stabilizing and mutagenic compounds. Because of the complexity of the Maillard reaction, mass spectrometry, coupled or not to separation techniques, is a key tool in this research area and we will review in this article the contribution of mass spectrometry to the understanding of this reaction. Different steps of Maillard reaction will be described and the importance and the role played by mass spectrometry will be highlighted. In addition, different approaches to investigate the Maillard reaction from the formation of Amadori products (early Maillard reaction product) to the flavor and melanoidin production will also be covered. © 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:487,507, 2005 [source] A MS data search method for improved 15N-labeled protein identificationPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 17 2009Yaoyang Zhang Abstract Quantitative proteomics using stable isotope labeling strategies combined with MS is an important tool for biomarker discovery. Methods involving stable isotope metabolic labeling result in optimal quantitative accuracy, since they allow the immediate combination of two or more samples. Unfortunately, stable isotope incorporation rates in metabolic labeling experiments using mammalian organisms usually do not reach 100%. As a consequence, protein identifications in 15N database searches have poor success rates. We report on a strategy that significantly improves the number of 15N-labeled protein identifications and results in a more comprehensive and accurate relative peptide quantification workflow. [source] The complete genome sequence of a dog: a perspectiveBIOESSAYS, Issue 6 2006Soohyun Lee A complete, high-quality reference sequence of a dog genome was recently produced by a team of researchers led by the Broad Institute, achieving another major milestone in deciphering the genomic landscape of mammalian organisms. The genome sequence provides an indispensable resource for comparative analysis and novel insights into dog and human evolution and history. Together with the survey sequence of a poodle previously published in 2003, the two dog genome sequences allowed identification of more than 2.5 million single nucleotide polymorphisms within and between dog breeds, which can be used in evolutionary analysis, behavioral studies and disease gene mapping.1 © 2005 Wiley Periodicals, Inc. BioEssays 28: 569,573, 2006. © 2006 Wiley Periodicals, Inc. [source] |