Home About us Contact | |||
Male Spiders (male + spider)
Selected AbstractsSpider sex pheromones: emission, reception, structures, and functionsBIOLOGICAL REVIEWS, Issue 1 2007A. C. Gaskett Abstract Spiders and their mating systems are useful study subjects with which to investigate questions of widespread interest about sexual selection, pre- and post-copulatory mate choice, sperm competition, mating strategies, and sexual conflict. Conclusions drawn from such studies are broadly applicable to a range of taxa, but rely on accurate understanding of spider sexual interactions. Extensive behavioural experimentation demonstrates the presence of sex pheromones in many spider species, and recent major advances in the identification of spider sex pheromones merit review. Synthesised here are the emission, transmission, structures, and functions of spider sex pheromones, with emphasis on the crucial and dynamic role of sex pheromones in female and male mating strategies generally. Techniques for behavioural, chemical and electrophysiological study are summarised, and I aim to provide guidelines for incorporating sex pheromones into future studies of spider mating. In the spiders, pheromones are generally emitted by females and received by males, but this pattern is not universal. Female spiders emit cuticular and/or silk-based sex pheromones, which can be airborne or received via contact with chemoreceptors on male pedipalps. Airborne pheromones primarily attract males or elicit male searching behaviour. Contact pheromones stimulate male courtship behaviour and provide specific information about the emitter's identity. Male spiders are generally choosy and are often most attracted to adult virgin females and juvenile females prior to their final moult. This suggests the first male to mate with a female has significant advantages, perhaps due to sperm priority patterns, or mated female disinterest. Both sexes may attempt to control female pheromone emission, and thus dictate the frequency and timing of female mating, reflecting the potentially different costs of female signalling and/or polyandry to both sexes. Spider sex pheromones are likely to be lipids or lipid soluble, may be closely related to primary metabolites, and are not necessarily species specific, although they can still assist with species recognition. Newer electrophysiological techniques coupled with chemical analyses assist with the identification of sex pheromone compounds. This provides opportunities for more targeted behavioural experimentation, perhaps with synthetic pheromones, and for theorising about the biosynthesis and evolution of chemical signals generally. Given the intriguing biology of spiders, and the critical role of chemical signals for spiders and many other animal taxa, a deeper understanding of spider sex pheromones should prove productive. [source] Sublethal responses of wolf spiders (Lycosidae) to organophosphorous insecticidesENVIRONMENTAL TOXICOLOGY, Issue 5 2002S. Van Erp Abstract The activities of cholinesterase (ChE) and glutathione S -transferase (GST) enzymes were assessed in the wolf spider (Lycosa hilaris) as biomarkers of organophosphate contamination in agricultural ecosystems. Spiders were exposed to simulated field rates of two commercially available organophosphorous insecticides [Basudin (diazinon) and Lorsban (chlorpyrifos)] under laboratory conditions. In terms of survival, chlorpyrifos and diazinon were more toxic to male than to female wolf spiders, but gender-specific differences in ChE activities were not evident. Cholinesterase activity in male spiders was inhibited to 14% and 61% of control activity by Basudin and Lorsban, respectively. Gluthathione S -transferase activity was not affected by either pesticide. Mortality and biomarker responses in the wolf spider were further investigated following the application of Basudin to pasture. Wolf spiders were deployed into field mesocosms; after 24 h mortality was 40%, and surviving spiders displayed significant inhibition of ChE activity (87%) compared with controls. Cholinesterase activity in spiders exposed for subsequent 24- or 48-h time periods was monitored until it returned to control levels 8 days post-application. Inhibition of ChE activity after a single application of Basudin indicate the potential use of this enzyme in wolf spiders as a biomarker for evaluating organophosphate contamination. © 2002 Wiley Periodicals, Inc. Environ Toxicol 17: 449,456, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/tox.10078 [source] Effects of methamidophos on the predating behavior of Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2007Lingling Deng Abstract The effects of an organophosphorous insecticide, methamidophos, on the pest control potential of the spider Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae) were investigated in the laboratory with the fruit flies (Drosophila melanogaster Meigen). The influence of methamidophos on predation by H. graminicola was very obvious in female spiders, which preyed on fewer prey in the 8 h after exposure to the insecticide but subsequently recovered. On the other hand, the predation rates in male spiders were not affected by the insecticide within 24 h of treatment. However, a 10% lethal dose (LD10) of methamidophos resulted in an enhanced predation rate per day for male spiders, whereas a 50% lethal dose reduced the predation rate. In addition, it was shown that the functional response of H. graminicola to the fruit fly was a type II response, and the type of functional response of insecticide-treated females changed from type II to type I, with no change in the response of male spiders. The attack rate of males treated with the LD10 dosage of insecticide was significantly higher than the controls, which suggests that the insecticide stimulates the performance of spiders. Prey utilization of males treated with low doses of insecticide was lower than the control, which indicates that the insecticide did not result in these spiders eating more prey, but killing more. [source] The effects of morphology and substrate diameter on climbing and locomotor performance in male spidersFUNCTIONAL ECOLOGY, Issue 2 2010John Prenter Summary 1.,Spiders are the most sexually size dimorphic terrestrial animals and the evolution of this dimorphism is controversial. Patterns of sexual size dimorphism (SSD) in spiders have been related to individual performance and size. In 2002 Moya-Laraño, Halaj & Wise proposed the ,gravity hypothesis' to explain patterns of sexual size dimorphism in spiders whereby species building webs high in the vegetation are predicted to show greater SSD than those that build lower down. They advocated an advantage in climbing speed in smaller males searching for females in high places. The gravity hypothesis predicts a negative relationship between male size and climbing speed. In 2007 Brandt & Andrade questioned this interpretation and proposed that the pattern of SSD in spiders is better explained by an advantage for larger males of low-dwelling species to run faster along the ground. 2.,We induced male spiders to run a standard distance up vertical poles of different diameters to examine the predicted relationship between size and climbing speed. We tested two species of extremely size-dimorphic orb-web spiders, Argiope keyserlingi and Nephila plumipes, that differ in the height at which females tend to build webs, and one species of jumping spider, Jacksonoides queenslandica, with low levels of size dimorphism. We also examined morphological determinants of horizontal motility by inducing males to run along a raceway. 3.,Substrate diameter was consistently found to influence climbing performance. In N. plumipes, climbing speed was slowest on the widest diameter substrate. In A. keyserlingi, size-adjusted leg length and substrate diameter interacted to determine climbing speed, while in J. queenslandica, there was an interaction between body size and substrate diameter on climbing speed. In the effect of substrate diameter, we have identified a potential bias in previous tests of the gravity hypothesis. 4.,Our results do not support the prediction of the gravity hypothesis. There was no evidence of a negative relationship between body size and climbing speed in the two orb-web species with high levels of SSD. Our results are also not consistent with a recent modification of the gravity hypothesis that suggests a curvilinear relationship between climbing speed and size. 5.,Body size was positively associated with maximum running speed only in the cursorial hunter J. queenslandica. For this spider, results are more consistent with Brandt & Andrade's explanation for variation in SSD in spiders, that larger males are selected for superior running ability in low-dwelling species, rather than selection for smaller size for climbing to females in high-dwelling species. [source] |