Home About us Contact | |||
Male Sexual Behavior (male + sexual_behavior)
Selected AbstractsThe Effects of Oral Administration of D-Modafinil on Male Rat Ejaculatory BehaviorTHE JOURNAL OF SEXUAL MEDICINE, Issue 1pt1 2010Lesley Marson PhD ABSTRACT Introduction., Premature ejaculation (PE) is one of the most common forms of male sexual dysfunction. Examination of various classes of drugs on ejaculation latency would provide further opportunities for drug development in this field. Aim., This study was conducted to examine the effects of the d-isomer of modafinil (d-modafinil) on ejaculatory behavior in a rat model. Methods., Male sexual behavior in the rat was examined after acute oral administration of d-modafinil (10 mg/kg, 30 mg/kg, and 100 mg/kg) in copulation studies with receptive females. Main Outcome Measures., The latency to ejaculation, post-ejaculatory interval, and the frequency of mounting behavior were measured. Results d-modafinil (30 mg/kg and 100 mg/kg) produced a significant delay in ejaculation. The delay in ejaculation was accompanied by an increase in the number of intromissions without any change in the mount or intromission latency. The possible mechanisms of action of d-modafinil to produce this delay in ejaculation are discussed. Conclusions., These results demonstrate that acute oral administration of d-modafinil can lengthen the latency to ejaculation in rats without suppressing sexual behavior. The greatest delay in ejaculation was observed in animals with shorter baseline ejaculatory latencies. Investigation into new classes of drugs that modulate ejaculation may provide new therapeutic options for treating PE. Marson L, Yu G, and Farber NM. The effects of oral administration of d-modafinil on male rat ejaculatory behavior. J Sex Med 2010;7:70,78. [source] Identification of prostaglandin E2 receptors mediating perinatal masculinization of adult sex behavior and neuroanatomical correlatesDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2008Christopher L. Wright Abstract Prostaglandin E2 (PGE2) mediates the organization of male rat sexual behavior and medial preoptic area (MPOA) neuroanatomy during a sensitive perinatal window. PGE2 is up-regulated in response to estradiol, and initiates a two-fold increase in dendritic spines densities on neurons. All the four receptors for PGE2 and EP1-4 are present in developing POA, a critical region controlling male sexual behavior. Previous studies explored that EP receptors are involved in PGE2-induction of neonatal levels of spinophilin protein, a surrogate marker for dendritic spine formation, but did not assess behavioral masculinization. Here, we used two approaches, suppression of EP receptor expression with antisense oligonucleotides and activation of EP receptors with selective agonists, to test which receptors are necessary and sufficient, respectively, for the effects of PGE2 on behavior and neuronal morphology. In female rats, neonatal treatment with antisense oligonucleotides against EP2 or EP4 but not EP1 or EP3 completely prevented the expression of adult behavior organized by PGE2 exposure. The effects of ONO-DI-004, ONO-AE-259-01, ONO-AE-248, and ONO-AE1-329 (EP1-4 agonists respectively) were equivalent to PGE2 treatment, which suggests activating any EP receptor neonatally suffices in masculinizing sex behavior. When given alone, not all EP agonists increased neonatal POA spinophilin levels; yet giving each agonist neonatally increased adult levels. Moreover, adult spinophilin levels significantly correlated with two measures of male sexual behavior. The body of evidence suggests that EP2 and EP4 are both necessary and sufficient for PGE2-induced masculinization of sex behavior, whereas EP1 and EP3 provide redundant roles. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source] Brain aromatase, 5,-reductase, and 5,-reductase change seasonally in wild male song sparrows: Relationship to aggressive and sexual behaviorDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003Kiran K. Soma Abstract In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5,-, and 5,-reductase, enzymes that convert T to 17,-estradiol, 5,-dihydrotestosterone (5,-DHT, a potent androgen), or 5,-DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5,-reductase changed seasonally in a region-specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5,-Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free-living animals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 209,221, 2003 [source] Effects of sex chromosome aneuploidy on male sexual behaviorGENES, BRAIN AND BEHAVIOR, Issue 6 2008J. H. Park Incidence of sex chromosome aneuploidy in men is as high as 1:500. The predominant conditions are an additional Y chromosome (47,XYY) or an additional X chromosome (47,XXY). Behavioral studies using animal models of these conditions are rare. To assess the role of sex chromosome aneuploidy on sexual behavior, we used mice with a spontaneous mutation on the Y chromosome in which the testis-determining gene Sry is deleted (referred to as Y,) and insertion of a Sry transgene on an autosome. Dams were aneuploid (XXY,) and the sires had an inserted Sry transgene (XYSry). Litters contained six male genotypes, XY, XYY,, XXSry, XXY,Sry, XYSry and XYY,Sry. In order to eliminate possible differences in levels of testosterone, all of the subjects were castrated and received testosterone implants prior to tests for male sex behavior. Mice with an additional copy of the Y, chromosome (XYY,) had shorter latencies to intromit and achieve ejaculations than XY males. In a comparison of the four genotypes bearing the Sry transgene, males with two copies of the X chromosome (XXSry and XXY,Sry) had longer latencies to mount and thrust than males with only one copy of the X chromosome (XYSry and XYY,Sry) and decreased frequencies of mounts and intromissions as compared with XYSry males. The results implicate novel roles for sex chromosome genes in sexual behaviors. [source] Peptidergic modulation of male sexual behavior in Lymnaea stagnalis: structural and functional characterization of ,FVamide neuropeptidesJOURNAL OF NEUROCHEMISTRY, Issue 5 2003A. B. Smit Abstract In the simultaneous hermaphrodite snail Lymnaea stagnalis, copulation as a male is controlled by neurons that send axons to the male copulatory organs via a single penis nerve. Using direct mass spectrometry of a penis nerve sample, we show that one of the molecular ions has a mass corresponding to GAPRFVamide, previously identified from the buccal ganglia, and named Lymnaea inhibitory peptide (LIP). The identity of this peptide is confirmed by partial peptide purification from the penis nerve, followed by post source decay mass spectrometry. We cloned the LIP-encoding cDNA, which predicts a prohormone that gives rise to five copies of LIP (now re-named LIP A), two other ,FVamide peptides (LIPs B and C), and five structurally unrelated peptides. The LIP gene is expressed in neurons of the right cerebral ventral lobe that send their axons into the penis nerve. We show that the LIP A peptide is present in these neurons and in the penis nerve, and confirmed the presence of LIP B and C in the penis nerve by post source decay mass spectrometry. Finally, we demonstrate that LIP A, B and C inhibit the contractions of the penis retractor muscle, thereby implicating their role in male copulation behavior. [source] Impaired sexual behavior in male mice deficient for the ,1,3 N -Acetylglucosaminyltransferase-I geneMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 5 2008Franziska Biellmann Abstract The ,1,3 N -acetylglucosaminyltransferase-1 (B3gnt1) gene encodes a poly- N -acetyllactosamine synthase which can initiate and extend poly- N -acetyllactosamine chains [Gal(,1,4)GlcNAc (,1,3)n]. Previous investigations with heterozygous and homozygous null mice for this gene have revealed the importance of poly- N -acetyllactosamine chains for the formation of olfactory axon connections with the olfactory bulb and the migration of gonadotropin releasing hormone neurons to the hypothalamus. The possible long-term effects of these developmental defects, however, has not yet been studied. Here we have examined a reproductive phenotype observed in B3gnt1 -null mice. Whereas the B3gnt1 null females were fertile, the B3gnt1 null males were not able to sire litters at the expected rate when mated to either wildtype or B3gnt1 -null females. We assessed male sexual behavior as well as male reproduction parameters such as testes size, spermatogenesis, sperm number, morphology, and the development of early embryos in order to identify the source of a reduced rate of reproduction. Our findings show that the B3gnt1 null male reproductive organs were functional and could not account for the lower rate at which they produced offspring with wildtype conspecifics. Hence, we propose that the phenotype observed resulted from an impaired sexual response to female mating partners. Mol. Reprod. Dev. 75: 699,706, 2008. © 2007 Wiley-Liss, Inc. [source] Control of Cell Number in the Bed Nucleus of the Stria Terminalis of Mice: Role of Testosterone Metabolites and Estrogen Receptor SubtypesTHE JOURNAL OF SEXUAL MEDICINE, Issue 4pt1 2010Shin-ichi Hisasue MD ABSTRACT Introduction., The bed nucleus of the stria terminalis (BNST) exhibits several sex differences that may be related to male sexual behavior and gender identity. In mice and rats, sex differences in the principal nucleus of the BNST (BNSTp) are due to sexually dimorphic cell death during perinatal life. Although testosterone treatment of newborn female rats increases BNSTp cell number, the relevant hormone metabolite(s) are not known, and the effect of testosterone on the development of BNSTp cell number in mice has not been examined. Aim., To identify the sex hormone metabolites and receptors controlling cell number, volume, and cell size in the BNSTp of mice. Methods., In the first experiment, C57BL/6J male mice were injected on the day of birth with peanut oil; females were injected with testosterone propionate (TP), estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), or oil alone, and the BNSTp of all animals was examined in adulthood. In the second experiment, to compare effects of EB to the effects of estrogen receptor subtype specific agonists, newborn female mice were injected with EB, propyl-pyrazole-triol (PPT, a selective estrogen receptor alpha [ER,] agonist), or diarylpropionitrile (DPN, a selective estrogen receptor beta [ER,] agonist). Main Outcome Measures., Nuclear volume measurements and stereological cell counts in the BNSTp in adulthood. Results., TP treatment of newborn females completely masculinized both BNSTp volume and cell number. EB masculinized neuron number, whereas DHTP had no effect on volume or cell number. In the second experiment, EB again fully masculinized neuron number in the BNSTp and in this study also masculinized BNSTp volume. PPT and DPN each significantly increased cell number, but neither completely mimicked the effects of EB. Conclusions., We conclude that estrogenic metabolites of testosterone control sexually dimorphic cell survival in the BNSTp and that activation of both ER, and ER, may be required for complete masculinization of this brain region. Hisasue S, Seney ML, Immerman E, and Forger NG. Control of cell number in the bed nucleus of the stria terminalis of mice: Role of testosterone metabolites and estrogen receptor subtypes. J Sex Med 2010;7:1401,1409. [source] |