Home About us Contact | |||
Male Phase (male + phase)
Selected AbstractsSexual development and reproductive seasonality of hogfish (Labridae: Lachnolaimus maximus), an hermaphroditic reef fishJOURNAL OF FISH BIOLOGY, Issue 5 2007R. S. McBride The seasonality, size, age, colour phases and sexual dimorphism of 13 reproductive classes of hogfish Lachnolaimus maximus are described. Analysis of histological sections of gonads (n = 1662) confirmed earlier conclusions that L. maximus is a monandric, protogynous hermaphrodite. Sex change was initiated at the end of the spawning season and over a broad range of sizes and ages. It occurred after a functional female phase (postmaturation) and proceeded more slowly (months) than previously believed. Eventually all individuals changed sex to a terminal male phase. Females were batch spawners, spawning as often as every day during winter and spring. There was no evidence of precocious sperm crypts in active females, sperm competition or other alternative male sexual strategies. Mating has been reported elsewhere to be haremic. The sexual development of L. maximus appears to be adaptive in terms of Ghiselin's size-advantage model, which links monandric protogyny and polygyny. The slow rate of sex change, however, poses problems when fishing pressure is high because harvest of a single male has the potential to reduce the reproductive output of an entire harem. [source] Floral phenology and sex expression in functionally monoecious Rhoiptelea chiliantha (Rhoipteleaceae)BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2006SHI-GUO SUN The reproductive ecology of wind-pollinated gynomonoecious species, in which the individual plant produces both female (pistillate) and perfect flowers, has rarely been studied. We examined the floral phenology and reproductive traits in Rhoiptelea chiliantha, described as gynomonoecy, to understand the adaptive significance of this sexual system. This species is a rare tree native to south-western China and northern Vietnam. The flowers are characterized by an anemophilous pollination syndrome, but no insects were observed foraging on them. Perfect flowers have larger tepals but smaller stigmas than female flowers, indicating flower size dimorphism. Floral ratios of female to perfect flowers are stable in different individuals and populations. On individual plants, perfect flowers open first, followed by female flowers, with a 1-week interval. Perfect flowers are protogynous with a 3.7-day interval (neuter phase) between the female phase (1.5 days) and expanded male phase (8.2 days). Both female and perfect flowers exhibit pronounced synchrony in flowering at the levels of inflorescences and individuals. However, flowers on different individuals show asynchronicity in timing of initial blooming. Tracking the process from pollination to fruit maturation, we found that female flowers contributed almost exclusively to seed production, but perfect flowers were sterile (functionally males). Therefore, this plant is functionally monoecious. This finding resolved a puzzle on the occurrence of female flowers in this plant, because previous reports described female flowers as being sterile. As the sex phases were completely separate between individuals, the pattern of floral phenology may ensure that outcrossing strongly predominates. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 152, 145,151. [source] Gonadal structure of the serial-sex changing gobiid fish Trimma okinawaeDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2005Yasuhisa Kobayashi In order to obtain basic information about the role played by endogenous sex hormones in bringing about sex changes in the serial-sex changing gobiid fish Trimma okinawae, the gonadal structure of male and female phases were observed histologically. Steroid-producing cells (SPC; Leydig cells in a testis) were observed ultrastructurally in the ovaries and testes of both female-phase and male-phase fish. In addition, gonadal expression of P450 cholesterol side-chain-cleavage (scc) was examined immunohistochemically. Gonads of fish in female and male phases were observed to have both ovaries and testes simultaneously. Female-phase fish had matured with many developed vitellogenic oocytes, while male-phase individuals had immature ovaries with many numbers of previtellogenic oocytes at the perinucleolus stage. Testes of fish in different sexual phases had active spermatogenic germ cells. Organellae of SPC in the ovaries of female-phase fish had active structures of steroid production. In contrast, SPC in the ovaries of male-phase fish did not show active structures of steroid production. Immunopositive reactions against the scc antibody in the ovaries of female-phase fish were very strong, but immunoreactions in the ovaries of male-phase fish were very weak. In the testis, moderate immunopositive signals were obtained from dual-phase male/females. [source] Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): A Well-Established Pollination System in the Northern Atlantic Rainforest of Pernambuco, BrazilPLANT BIOLOGY, Issue 4 2006A. C. D. Maia Abstract: Flowering, pollination ecology, and floral thermogenesis of Caladium bicolor were studied in the Atlantic Rainforest of Pernambuco, NE Brazil. Inflorescences of this species are adapted to the characteristic pollination syndrome performed by Cyclocephalini beetles. They bear nutritious rewards inside well-developed floral chambers and exhibit a thermogenic cycle which is synchronized to the activity period of visiting beetles. Heating intervals of the spadix were observed during consecutive evenings corresponding to the beginning of the female and male phases of anthesis. Highest temperatures were recorded during the longer-lasting female phase. An intense sweet odour was volatized on both evenings. Beetles of a single species, Cyclocephala celata, were attracted to odoriferous inflorescences of C. bicolor and are reported for the first time as Araceae visitors. All the inflorescences visited by C. celata developed into infructescences, whereas unvisited inflorescences showed no fruit development. Findings of previous studies in the Amazon basin of Surinam indicated that Cyclocephala rustica is a likely pollinator of C. bicolor. This leads to the assumption that locally abundant Cyclocephalini species are involved in the pollination of this species. [source] |