Male Genotypes (male + genotype)

Distribution by Scientific Domains


Selected Abstracts


Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: insights from spatial autocorrelation analysis of individual genotypes

MOLECULAR ECOLOGY, Issue 14 2006
H. M. NEVILLE
Abstract Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds. [source]


Sex-specific genetic structure in Schistosoma mansoni: evolutionary and epidemiological implications

MOLECULAR ECOLOGY, Issue 7 2002
F. Prugnolle
Abstract We studied the population genetic structure of 360 and 1247 adult Schistosoma mansoni using seven microsatellite and seven random amplified polymorphic DNA (RAPD) markers, respectively. Parasites were collected from their natural definitive host Rattus rattus in Guadeloupe (West Indies). We found a sex-specific genetic structure, a pattern never before reported in a parasitic organism. Male genotypes were more randomly distributed among rats than female genotypes. This interpretation was consistent with a lower differentiation between hosts for males relative to females, the higher genetic similarity between females in the same host and the observed local (i.e. within-individual-host) differences in allele frequencies between the two sexes. We discuss our results using ecological and immunological perspectives on host,parasite relationships. These results change our view on the epidemiology of schistosomiasis, a serious disease affecting humans in African and American intertropical zones. [source]


Effects of sex chromosome aneuploidy on male sexual behavior

GENES, BRAIN AND BEHAVIOR, Issue 6 2008
J. H. Park
Incidence of sex chromosome aneuploidy in men is as high as 1:500. The predominant conditions are an additional Y chromosome (47,XYY) or an additional X chromosome (47,XXY). Behavioral studies using animal models of these conditions are rare. To assess the role of sex chromosome aneuploidy on sexual behavior, we used mice with a spontaneous mutation on the Y chromosome in which the testis-determining gene Sry is deleted (referred to as Y,) and insertion of a Sry transgene on an autosome. Dams were aneuploid (XXY,) and the sires had an inserted Sry transgene (XYSry). Litters contained six male genotypes, XY, XYY,, XXSry, XXY,Sry, XYSry and XYY,Sry. In order to eliminate possible differences in levels of testosterone, all of the subjects were castrated and received testosterone implants prior to tests for male sex behavior. Mice with an additional copy of the Y, chromosome (XYY,) had shorter latencies to intromit and achieve ejaculations than XY males. In a comparison of the four genotypes bearing the Sry transgene, males with two copies of the X chromosome (XXSry and XXY,Sry) had longer latencies to mount and thrust than males with only one copy of the X chromosome (XYSry and XYY,Sry) and decreased frequencies of mounts and intromissions as compared with XYSry males. The results implicate novel roles for sex chromosome genes in sexual behaviors. [source]


Cryptic behaviours, inverse genetic landscapes, and spatial avoidance of inbreeding in the Pacific jumping mouse

MOLECULAR ECOLOGY, Issue 4 2007
SACHA N. VIGNIERI
Abstract Although the behaviour of individuals is known to impact the genetic make-up of a population, observed behavioural patterns do not always correspond to patterns of genetic structure. In particular, philopatric or dispersal-limited species often display lower-than-expected values of relatedness or inbreeding suggestive of the presence of cryptic migration, dispersal, or mating behaviours. I used a combination of microsatellite and mark,recapture data to test for the influence of such behaviours in a dispersal-limited species, the Pacific jumping mouse, within a semi-isolated population over three seasons. Despite short dispersal distances and a low rate of first generation migrants, heterozygosities were high and inbreeding values were low. Dispersal was male-biased; interestingly however, this pattern was only present when dispersal was considered to include movement away from paternal home range. Not unexpectedly, males were polygynous; notably, some females were also found to be polyandrous, selecting multiple neighbouring mates for their single annual litter. Patterns of genetic structure were consistent with these more inconspicuous behavioural patterns. Females were more closely related than males and isolation by distance was present only in females. Furthermore, detailed genetic landscapes revealed the existence of strong, significant negative correlations, with areas of low genetic distance among females overlapping spatially with areas of high genetic distance among males. These results support the hypothesis that the detected cryptic components of dispersal and mating behaviour are reducing the likelihood of inbreeding in this population through paternally driven spatial mixing of male genotypes and polyandry of females. [source]


THE EVOLUTION OF FILIAL CANNIBALISM AND FEMALE MATE CHOICE STRATEGIES AS RESOLUTIONS TO SEXUAL CONFLICT IN FISHES

EVOLUTION, Issue 2 2000
Kai Lindström
Abstract., Filial cannibalism (the consumption of one's own viable offspring) is common among fish with paternal care. In this study, I use a computer simulation to study simultaneous evolution of male filial cannibalism and female mate choice. Under certain conditions, selection on parental males favors filial cannibalism. When filial cannibalism increases a male's probability to raise the current brood successfully, filial cannibalism also benefits the female. However, when egg eating is a male investment into future reproduction, a conflict between female and male interests emerges. Here I investigate how female discrimination against filial cannibals affects evolution of filial cannibalism and how different female choice criteria perform against filial cannibalism. The introduction of discriminating females makes the fixation of filial cannibalism less likely. I introduced three different female choice criteria: (1) females who could discern a male's genotype, that is, whether the male was going to eat eggs as an investment in future reproductive events; (2) energy-choosing females that preferred to mate with males who had enough energy reserves to live through the current brood cycle without consuming eggs; and (3) females that preferred to mate with already mated males, that is, males with eggs in their nest. Genotype choice never coexisted with filial cannibals at fixation and filial cannibals were unable to invade a population with genotype-choosing females. Energy choice was successful only when males had high energy reserves and were less dependent on filial cannibalism as an alternative energy source. The egg choosers frequently coexisted with the cannibals at fixation. When the female strategies were entered simultaneously, the most frequent outcome for low mate sampling costs was that both the cannibals and the egg choice was fixed and all other strategies went extinct. These results suggest that sexual conflicts may not always evolve toward a resolution of the conflict, but sometimes the stable state retains the conflict. In the present case, this was because the egg-preference strategy had a higher fitness than the other female strategies. The outcome of this simulation is similar to empirical findings. In fish with paternal care, male filial cannibalism and female preference for mates with eggs commonly co-occur. [source]