Male F344 Rats (male + f344_rat)

Distribution by Scientific Domains


Selected Abstracts


Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPAR, expression and alteration of lipid composition

INTERNATIONAL JOURNAL OF CANCER, Issue 6 2004
Hiroyuki Kohno
Abstract Our previous short-term experiment demonstrated that seed oil from bitter melon (Momordica charantia) (BMO), which is rich in cis(c)9, trans(t)11, t13 -conjugated linolenic acid (CLN), inhibited the development of azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF). In our study, the possible inhibitory effect of dietary administration of BMO on the development of colonic neoplasms was investigated using an animal colon carcinogenesis model initiated with a colon carcinogen AOM. Male F344 rats were given subcutaneous injections of AOM (20 mg/kg body weight) once a week for 2 weeks to induce colon neoplasms. They also received diets containing 0.01%, 0.1% or 1% BMO for 32 weeks, starting 1 week before the first dosing of AOM. At the termination of the study (32 weeks), AOM induced 83% incidence (15/18 rats) of colonic adenocarcinoma. Dietary supplementation with 0.01% and 0.1% BMO caused significant reduction in the incidence (47% inhibition by 0.01% BMO, p<0.02; 40% inhibition by 0.1% BMO, p<0.05; and 17% inhibition by 1% BMO) and the multiplicity (64% inhibition by 0.01% BMO, p<0.005; 58% inhibition by 0.1% BMO, p<0.02; and 48% inhibition by 1% BMO, p<0.05) of colonic adenocarcinoma, though a clear dose response was not observed. Such inhibition was associated with the increased content of CLA (c9,t11-18:2) in the lipid composition in colonic mucosa and liver. Also, BMO administration in diet enhanced expression of peroxisome proliferator-activated receptor (PPAR) , protein in the nonlesional colonic mucosa. These findings suggest that BMO rich in CLN can suppress AOM-induced colon carcinogenesis and the inhibition might be caused, in part, by modification of lipid composition in the colon and liver and/or increased expression of PPAR, protein level in the colon mucosa. © 2004 Wiley-Liss, Inc. [source]


Dose- and Sex-related Carcinogenesis by N-Bis(2-hydroxypropyl)nitrosamine in Wistar Rats

CANCER SCIENCE, Issue 4 2000
Eduardo L. T. Moreira
An initiation-promotion medium-term bioassay for detection of chemical carcinogens, developed in the male F344 rat, uses 0.1% N-bis(2-hydroxypropyl)nitrosamine (DHPN) among five genotoxic chemicals for the initiation of carcinogenesis in multiple organs. To establish this bioassay in the Wistar strain, the effects of two dose levels of DHPN were evaluated on the main DHPN rat target organs: lung, thyroid gland, kidneys and liver. Four groups of male and female animals were studied: Control,untreated group; Multi-organ initiated group (also referred to as DMBDD, based on the initials of the five initiators),treated sequentially with N-diethylnitrosamine (DEN, i.p.), N-methyl-N-nitrosourea (MNU, i.p.), N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN, drinking water), N, ,N,-dimethylhydrazine (DMH, s.c.) and DHPN (drinking water) for 4 weeks; a third group treated with 0.1% DHPN in drinking water for 2 weeks and the last group treated with 0.2% DHPN in drinking water for 4 weeks. The animals were sacrificed after 30 weeks. DHPN at 0.2% induced preneoplasia in the liver and kidneys of rats of both sexes, the number and area of the putative preneoplastic liver glutathione S-transferase-positive hepatocyte foci being significantly increased in these animals. It also induced benign and malignant tumors in female and in male rats. However, there was no relationship between the increased incidence of preneoplastic lesions and tumor development in the 0.2% DHPN-exposed groups of both sexes. DHPN at 0.1% induced only a few preneoplastic lesions in the liver and kidney and no tumors in both male and female rats. A clear dose and sex-related carcinogenic activity of DHPN was registered, although Wistar rats of both sexes showed a relative resistance to the carcinogenic activity of this compound. [source]


Modulation of DNA hypomethylation as a surrogate endpoint biomarker for chemoprevention of colon cancer

MOLECULAR CARCINOGENESIS, Issue 2 2004
Lianhui Tao
Abstract Surrogate end-point biomarkers are being developed as indicators of the efficacy of chemopreventive agents. These biomarkers are molecular and biological end-points that can be modulated by chemopreventive agents in accordance with their efficacy to prevent cancer. DNA hypomethylation is a common alteration found in colon tumors that has the potential of being modulated by chemopreventive agents and thus being useful as a surrogate end-point biomarker. Agents that were either effective or ineffective in preventing colon cancer were evaluated for the ability to modulate DNA hypomethylation in azoxymethane-induced colon tumors in male F344 rats. DNA methylation was determined by Dot Blot Analysis using a mouse monoclonal anti-5-methylcytosine antibody. Colon tumors had a 70% reduction in DNA methylation relative to normal colonic mucosa. DNA methylation in the tumors was increased by 7 days of treatment with agents that have been shown to prevent colon cancer (calcium chloride, ,-diflouromethylornithine [DFMO], piroxicam, and sulindac), whereas agents shown not to prevent colon cancer in rats (low dose aspirin, 2-carboxyphenyl retinamide [2-CPR], quercetin, 9- cis retinoic acid, and rutin) did not increase DNA methylation. The results suggest that the ability to reverse the DNA hypomethylation in colon tumors could be useful as a surrogate end-point biomarker for chemoprevention of colon cancer. © 2004 Wiley-Liss, Inc. [source]


Absence of 2,-deoxyguanosine-carbon 8-bound ochratoxin A adduct in rat kidney DNA monitored by isotope dilution LC-MS/MS

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 4 2008
Thierry Delatour
Abstract The contribution of DNA adduct formation in the carcinogenic action of the mycotoxin ochratoxin A (OTA) has been subject to much debate. Recently, a carbon-bonded ochratoxin A-2,-deoxyguanosine adduct (dGuoOTA) formed by photochemical reaction in vitro has been shown by 32P-postlabeling/TLC to comigrate with a spot detected in DNA isolated from rat and pig kidney following exposure to OTA. Considering the large body of evidence arguing against covalent DNA binding of OTA and the poor resolution and specificity of postlabeling analysis, we developed a stable isotope dilution LC-MS/MS method to analyze dGuoOTA in kidney DNA isolated from rats treated with OTA. dGuoOTA and nitrogen-15-labeled dGuoOTA (15N5 -dGuoOTA) were prepared by photoirradiation of OTA in the presence of dGuo or nitrogen-15-labeled dGuo. Conditions for DNA hydrolysis were optimized using a synthetic oligonucleotide containing dGuoOTA to ensure complete release of dGuoOTA. The LOD of the method (S/N > 3) was 10 fmol dGuoOTA on-column. However, dGuoOTA was not detected in DNA samples isolated from male F344 rats treated with OTA for up to 90 days at doses known to cause renal tumor formation. Detection limits, calculated for each individual sample based on the absolute LOD and the amount of DNA injected, were as low as 3.5 dGuoOTA/109 nucleotides. These data are consistent with previous results showing lack of DNA adduct formation by OTA and demonstrate that dGuoOTA is not formed in biologically relevant amounts under physiological conditions in vivo. [source]


Pharmacological doses of dietary curcumin increase colon epithelial cell proliferation in vivo in rats

PHYTOTHERAPY RESEARCH, Issue 10 2007
Sylvia Jeewon Kim
Abstract Although curcumin has preventive actions in animal models of colon cancer, whether the mechanism of action is through anti-proliferation in normal environment is not clearly understood. Here, we studied the effects of chemopreventive doses of curcumin on the proliferation rate of colon epithelial cells (CEC), using a recently developed stable isotope , mass spectrometric method for measuring DNA synthesis rate. Adult male F344 rats were given diets containing 0, 2 and 4% curcumin for 5 weeks. 4% 2H2O was given in drinking water to label DNA, after a priming bolus, for 4 days prior to sacrifice. The isotopic enrichment of the deoxyribose moiety of deoxyadenosine from DNA was measured by gas chromatography , mass spectrometry. Cell cycle analysis was performed after propidium iodide staining of CECs. Curcumin administration did not reduce but instead resulted in dose-dependent increases in CEC proliferation rate (p < 0.05) for 2% and 4% curcumin vs 0%). The length of the colon crypts and the fraction of cells in S-phase were also increased in the 2% and 4% curcumin groups (p < 0.05). Thus, pharmacological doses of curcumin increase CEC proliferation rate and pool size in normal rats. Reduction of CEC proliferation therefore cannot explain the proposed chemopreventive actions of curcumin in colon cancer. Copyright © 2007 John Wiley & Sons, Ltd. [source]


A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals

CANCER SCIENCE, Issue 1 2003
Nobuyuki Lto
A reliable medium-term bioassay system for rapid detection of carcinogenic potential of chemicals in the human environment has been developed. The 8-week-protocol consists of 2 stages; male F344 rats are given a single intraperitoneal injection of diethylnitrosamine (200 mg/kg) for initiation of liver carcinogenesis, followed by a 6-week test chemical treatment starting 2 weeks thereafter. Test chemicals are usually given in the diet or the drinking water and in the 2nd week of test chemical treatment, all rats are subjected to two-thirds partial hepatectomy in order to induce regenerative cell replication. The end-point marker is the glutathione S-transferase placental form (GST-P)-positive hepatic focus, the numbers and sizes of which are analyzed using an image-analyzer and expressed as values per unit liver section (1 cm2). When the yield of GST-P-positive foci is significantly enhanced (P<0.05) over the control value, a chemical is judged to possess carcinogenic or promotion potential for the liver. Among 313 chemicals already tested in this system in our laboratory, 30/31 (97%) mutagenic hepatocarcinogens and 29/33 (88%) non-mutagenic hepatocarcinogens gave positive results. Ten out of 43 (23%) agents known to be carcinogenic in organs other than the liver were also positive. It is particularly important that only one of 48 non-carcinogens gave a very weak positive result, so that the system has a very low false-positivity rate. It is now well documented that the assay system is highly effective for detecting hepatocarcinogens, bridging the gap between traditional long-term carcinogenicity tests and short-term screening assays. At the Fourth International Conference on Harmonization, our medium-term liver bioassay based on an initiation and promotion protocol was recommended in the guidelines as an acceptable alternative to the long-term rodent carcinogenicity test. (Cancer Sci 2003; 94: 3,8) [source]


Differential Effects of Partial Hepatectomy and Carbon Tetrachloride Administration on Induction of Liver Cell Foci in a Model for Detection of Initiation Activity

CANCER SCIENCE, Issue 10 2001
Hiroki Sakai
Differential effects of partial hepatectomy (PH) and carbon tetrachloride (CC14) administration on induction of glutathione S-transferase placental form (GST-P)-positive foci were investigated in a model for detection of initiation activity. Firstly, we surveyed cell proliferation kinetics and fluctuation in cytochrome P450 (CYP) mRNA levels by means of relative-quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and CYP 2E1 apoprotein amount by immuno-blotting (experiment I) after PH or CC14 administration. Next, to assess the interrelationships among cell proliferation, fluctuation of CYPs after PH or CC14 administration and induction of liver cell foci, the non-hepatocarcinogen, 1,2-dimethylhydrazine (DMH) was administered to 7-week-old male F344 rats and initiated populations were selected using the resistant hepatocyte model (experiment II). In experiment I, the values of all CYP isozyme mRNAs after PH or CC14 administration were drastically decreased at the 12-h tune point. From 72 h, mRNAs for all CYP isozymes began increasing, with complete recovery after 7 days. The CYP 2E1 apoprotein content in the PH group fluctuated weakly, whereas in the CC14 group it had decreased rapidly after 12 h and was still low at the 48 h point. In experiment II, induction of GST-P-positive foci was related to cell kinetics in the PH group, with about a 6-h time lag between tune for carcinogen administration giving greatest induction of GST-P-positive foci and peaks in bromodeoxyuridine (BrdU) labeling, presumably due to the necessity for bioactivation of DMH. With CC14 administration, induction of foci appeared dependent on the recovery of CYP 2E1. In conclusion, PH was able to induce cell proliferation with maintenance of CYP 2E1, therefore being advantageous for induction of liver cell foci in models to detect initiation activity. [source]


Suppression of N -Nitrosomethylbenzylamine-induced Rat Esophageal Tumorigenesis by Dietary Feeding of 1,-Acetoxychavicol Acetate

CANCER SCIENCE, Issue 2 2000
Kunihiro Kawabata
The modifying effects of 1,-acetoxychavicol acetate (ACA) on N -nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis were investigated in male F344 rats. At 5 weeks of age, all test animals, except those given the test chemical alone, and the control rats received s.c. injections of NMBA (0.5 mg/kg body weight/injection, three times per week) for 5 weeks. At the termination of the study (20 weeks), 75% of rats treated with NMBA alone had esophageal neoplasms (papillomas). However, the groups given a dose of 500 ppm ACA during the initiation phase developed a significantly reduced incidence of tumors (29%; P < 0.01). Exposure to ACA (500 ppm) during the post-initiation phase also decreased the frequency of the tumors (38%; P < 0.05). A reduction of the incidence of preneoplastic lesions (hyperplasia or dysplasia) was obtained when ACA was administered in the initiation phase (P < 0.01). Cell proliferation in the esophageal epithelium, determined by assay of proliferating cell nuclear antigen (PCNA), was lowered by ACA (P < 0.05). Blood polyamine contents in rats given NMBA and the test compound were also smaller than those of rats given the carcinogen (P < 0.05). These findings suggest that dietary ACA is effective in inhibiting the development of esophageal tumors by NMBA when given during the initiation or post-initiation phase, and such inhibition is related to suppression of cell proliferation in the esophageal epithelium. [source]