Home About us Contact | |||
Maize
Kinds of Maize Terms modified by Maize Selected AbstractsDOMESTICATION OF MAIZE, SORGHUM, AND SUGARCANE DID NOT DRIVE THE DIVERGENCE OF THEIR SMUT PATHOGENSEVOLUTION, Issue 2 2007Andrew B. Munkacsi We investigated two alternative hypotheses for the origin of crop pathogen species: that human-mediated agricultural practices drove the divergence of many crop plant pathogen species or that coevolutionary processes in natural populations of the crops' ancestors drove divergence of pathogen species. We distinguished between these two hypotheses by constructing a robust multigene phylogeny and estimating the dates of divergence among four, monophyletic species of smut fungi (Ustilago maydis, U. scitaminea, Sporisorium reilianum, S. sorghi) known to specifically infect maize, sorghum, sugarcane, and their wild ancestors. Without a fossil record for smut fungi, we calibrated the pathogen species' divergence times to their plant host divergence times. Specifically, a calibration date of 10,000 years was employed to test the hypothesis that the fungal species originated at the time of domestication of their current hosts and a calibration date of 50 million years was employed to test the hypothesis that the fungal species originated on wild ancestors of their domesticated hosts. Substitution rates at five protein coding genes were calculated and rates obtained for the 10,000 year calibration date were orders of magnitude faster than those commonly reported for eukaryotes, thus rejecting the hypothesis that these smut pathogen species diverged at the time of domestication. In contrast, substitution rates obtained for the 50 million year calibration were comparable to eukaryotic substitution rates. We used the 50 million year calibration to estimate divergence times of taxa in two datasets, one comprised solely the focal species and one comprised the focal species and additional related taxa. Both datasets indicate that all taxa diverged millions of years ago, strongly supporting the hypothesis that smut species diverged before the time of domestication and modern agriculture. Thus, smut species diverged in the ecological context of natural host plant and fungal populations. [source] Crop planting dates: an analysis of global patternsGLOBAL ECOLOGY, Issue 5 2010William J. Sacks ABSTRACT Aim, To assemble a data set of global crop planting and harvesting dates for 19 major crops, explore spatial relationships between planting date and climate for two of them, and compare our analysis with a review of the literature on factors that drive decisions on planting dates. Location, Global. Methods, We digitized and georeferenced existing data on crop planting and harvesting dates from six sources. We then examined relationships between planting dates and temperature, precipitation and potential evapotranspiration using 30-year average climatologies from the Climatic Research Unit, University of East Anglia (CRU CL 2.0). Results, We present global planting date patterns for maize, spring wheat and winter wheat (our full, publicly available data set contains planting and harvesting dates for 19 major crops). Maize planting in the northern mid-latitudes generally occurs in April and May. Daily average air temperatures are usually c. 12,17 °C at the time of maize planting in these regions, although soil moisture often determines planting date more directly than does temperature. Maize planting dates vary more widely in tropical regions. Spring wheat is usually planted at cooler temperatures than maize, between c. 8 and 14 °C in temperate regions. Winter wheat is generally planted in September and October in the northern mid-latitudes. Main conclusions, In temperate regions, spatial patterns of maize and spring wheat planting dates can be predicted reasonably well by assuming a fixed temperature at planting. However, planting dates in lower latitudes and planting dates of winter wheat are more difficult to predict from climate alone. In part this is because planting dates may be chosen to ensure a favourable climate during a critical growth stage, such as flowering, rather than to ensure an optimal climate early in the crop's growth. The lack of predictability is also due to the pervasive influence of technological and socio-economic factors on planting dates. [source] The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillasINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 7 2006Jorge Milán-Carrillo Summary Maize with a modified amino acid profile, i.e. greater amounts of lysine and tryptophan than normal, is known as ,quality protein maize' (QPM). The objective of this work was to find the best combination of extrusion process variables to produce QPM flour for making tortillas. QPM grits were mixed with lime and water and had a moisture content of 28%. The single screw extruder operation conditions were selected from factorial combination of three process variables: extrusion temperature (ET, 70,100 °C), lime concentration (LC, 0.1,0.3% of the maize weight) and screw velocity (SV, 80,250 rpm). Response surface methodology was used as an optimization technique. In vitro protein digestibility (PD); total colour difference (,E) of the flours, and tortilla puffing (TP) were chosen as response variables. A graphical method was used to obtain maximum PD, TP and minimum ,E. The optimum combination of process variables was: ET = 85 °C/LC = 0.21%(w/w)/SV = 240 rpm. Tortillas from QPM flour had similar chemical composition, physicochemical and sensory properties to tortillas from commercial nixtamalized maize flour; however, the former had the highest (P , 0.05) available lysine content and were therefore better nutritionally. [source] The Boys from Bothaville, or the Rise and Fall of King Maize: A South African StoryJOURNAL OF AGRARIAN CHANGE, Issue 4 2004HENRY BERNSTEIN This paper tells the story, for the first time, of a maverick maize farmers' association in South Africa during the period of apartheid. NAMPO (National Maize Producers' Organization), that grew out of SAMPI (South African Maize Producers' Institute), ultimately achieved a unique, if short-lived, breach in the normal operations of ,organized agriculture': a set of relations and practices that bound together white farmers, the National Party and the state. The paper provides an account of SAMPI/NAMPO's project of ,King Maize' and an explanation of its fall after a brief period of victory from 1981 to 1985. This explanation draws on broader patterns of agrarian change in contemporary capitalism combined with the fracturing of the original agrarian bloc of apartheid in the 1980s, marking the end of a ,second moment' of South Africa's version of a Prussian path of capitalist development. [source] Impacts of Market Reform on Spatial Volatility of Maize Prices in TanzaniaJOURNAL OF AGRICULTURAL ECONOMICS, Issue 2 2008Fredy T. M. Kilima C33; D40; O12; O55 Abstract Maize is one of the major staples and cash crops for many Tanzanians. Excessive volatility of maize prices destabilises farm income in maize-growing regions and is likely to jeopardise nutrition and investment in many poor rural communities. This study investigates whether market reform policies in Tanzania have increased the volatility of maize prices, and identifies regional characteristics that can be attributed to the spatial price volatility. To achieve the objectives, an autoregressive conditional heteroskedasticity in mean (ARCH-M) model is developed and estimated in this study. Results show that the reforms have increased farm-gate prices and overall price volatility. Maize prices are lower in surplus and less developed regions than those in deficit and developed regions. Results also show that the developed and maize-deficit regions, and regions bordering other countries have experienced less volatile prices than less developed, maize-surplus and non-bordering regions. Our findings indicate that investments in communication and transportation infrastructures from government and donor countries are likely to increase inter-regional and international trade, thereby reducing the spatial price volatility in Tanzanian maize prices in the long run. [source] Effect of Drought Stress on Yield and Quality of Maize/Sunflower and Maize/Sorghum Intercrops for Biogas ProductionJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2010S. SchittenhelmArticle first published online: 16 FEB 2010 Abstract Intercropping represents an alternative to maize (Zea mays L.) monoculture to provide substrate for agricultural biogas production. Maize was intercropped with either sunflower (Helianthus annuus L.) or forage sorghum [Sorghum bicolor (L.) Moench] to determine the effect of seasonal water supply on yield and quality of the above-ground biomass as a fermentation substrate. The two intercrop partners were grown in alternating double rows at plant available soil water levels of 60,80 %, 40,50 % and 15,30 % under a foil tunnel during the years 2006 and 2007 at Braunschweig, Germany. Although the intercrop dry matter yields in each year increased with increasing soil moisture, the partner crops responded quite differently. While maize produced significantly greater biomass under high rather than low water supply in each year, forage sorghum exhibited a significant yield response only in 2006, and sunflower in none of the 2 years. Despite greatly different soil moisture contents, the contribution of sorghum to the intercrop dry matter yield was similar, averaging 43 % in 2006 and 40 % in 2007. Under conditions of moderate and no drought stress, sunflower had a dry matter yield proportion of roughly one-third in both years. In the severe drought treatment, however, sunflower contributed 37 % in 2006 and 54 % in 2007 to the total intercrop dry matter yield. The comparatively good performance of sunflower under conditions of low water supply is attributable to a fast early growth, which allows this crop to exploit the residual winter soil moisture. While the calculated methane-producing potential of the maize/sorghum intercrop was not affected by the level of water supply, the maize/sunflower intercrop in 2006 had a higher theoretically attainable specific methane yield under low and medium than under high water supply. Nevertheless, the effect of water regime on substrate composition within the intercrops was small in comparison with the large differences between the intercrops. [source] Effect of Salt Stress on the Salicylic Acid Synthesis in Young Maize (Zea mays L.) PlantsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2009G. Szalai Abstract The effect of salt stress on salicylic acid (SA) synthesis was investigated parallel with the induction of antioxidant enzymes in young maize plants. Two-week-old maize plants grown in hydroponic solution were treated with 50 or 100 mm NaCl for 7 days. Antioxidant enzyme activities, and the SA and o -hydroxy-cinnamic acid (oHCA) levels were measured on the 3rd and 7th day of treatment and after 4 days of recovery. Ascorbate peroxidase activity increased in the leaves, but changes in guaiacol peroxidase activity only could be detected in the roots after 7 days. Glutathione reductase activity increased both in the leaves and in the roots after the 3rd day of 100 mm NaCl treatment. Free SA only increased during recovery in the leaves and roots. In the leaves of plants treated with 100 mm NaCl, a slight increase was observed in the free oHCA level, which rose dramatically after recovery, while in the roots an increase could only be seen after recovery. These results suggest that oHCA may serve not only as a precursor of SA but may also have an antioxidant role during salt stress and recovery. [source] Comparative Effect of Nitrogen Sources on Maize under Saline and Non-saline ConditionsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2008M. Irshad Abstract The main objective of this study was to compare the relationship between biomass yield and nutrient uptake in salt-stressed maize (Zea mays L.) following nitrogen (N) nutrition in a greenhouse. Three forms of N were applied, each at the rate of 100 kg ha,1: urea-N, nitrate-N, 1/2 urea-N + 1/2 nitrate-N (mixed-N) and no N application (control). Maize was grown as a test crop for 6 weeks. All N sources greatly stimulated crop growth and nutrient uptake compared with the control. The biomass (shoot and root) of maize was significantly greater in mixed-N treatment than in single sources in saline soil whereas it varied in the order of urea-N > mixed-N > nitrate-N > control in non-saline soil. Under both soil conditions, the concentration of Ca, Mg and Na in shoot was highest in nitrate-N treatments while that of K was highest in the control. Shoot nitrogen concentration was not significantly different among N sources under non-saline treatment, whereas under saline conditions, the concentration varied markedly in the order of nitrate-N > urea-N > mixed-N > control. The mineral concentrations in the shoot increased under salt treated soil when compared with non-saline soil. The ratios of Na/K, Na/Ca and Na/Mg were also higher under salt stress due to higher accumulation of Na ion in the shoot. Among N-fertilizer sources, Na/Ca and Na/Mg ratios were highest in control whereas Na/K ratio was the highest in nitrate-N treatment. The lowest cation ratios were noted in mixed-N-treated plants under both soils. Regression analysis showed that maize biomass was related to N concentration by the following equations: Y = ,4.54 + 0.97N for the non-saline soil and Y = 0.89 + 0.25N for the saline soil. Nitrogen use efficiency for non-saline soil exceeded that of saline soil by 15 %. [source] Cadmium Enhances Generation of Hydrogen Peroxide and Amplifies Activities of Catalase, Peroxidases and Superoxide Dismutase in MaizeJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2008P. Kumar Abstract Maize (Zea mays L. cv. 777) plants grown in hydroponic culture were treated with 50 ,m CdSO4. Growth and metabolic parameters indicative of oxidative stress and antioxidant responses were studied in leaves of plants treated with Cd. Apart from increasing lipid peroxidation and H2O2 accumulation, supply of Cd suppressed growth, fresh and dry mass of plants and decreased the concentrations of chloroplastic pigments. The activities of catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7), ascorbate peroxidase (APX; EC 1.11.1.11) and superoxide dismutase (SOD; EC 1.15.1.1) were increased in plants supplied 50 ,m Cd. Localization of activities of isoforms of these enzymes (POD, APX and SOD) on native gels also revealed increase in the intensities of pre-existing bands. Stimulated activities of CAT, POD, APX and SOD in maize plants supplied excess Cd do not appear to have relieved plants from excessive generation of reactive oxygen species (ROS). It is, therefore, concluded that supply of 50 ,m Cd induces oxidative stress by increasing production of ROS despite increased antioxidant protection in maize plants. [source] Nitrogen Rates and Water Stress Effects on Production, Lipid Peroxidation and Antioxidative Enzyme Activities in Two Maize (Zea mays L.) GenotypesJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 6 2007L.-X. Zhang Abstract Effects of nitrogen rates and water stress (WS) on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes were assessed at different stages under two levels of water supply conditions. WS caused a significant decline in dry matter, grain yield and activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) whereas a marked rise in malondialdehyde (MDA) concentration was observed in leaves for the two genotypes. However, the responses of the two varieties to WS were different: significantly higher dry matter, grain yield and antioxidative enzyme activities and lower MDA content were observed for Shaandan 9 than Shaandan 911, therefore the former could be treated as a drought tolerance variety comparatively. A better correlation was obtained amongst dry matter, grain yield and physiological traits. The addition of nitrogen increased dry matter and grain yield as well as activities of SOD, POD and CAT to different levels and significantly decreased MDA content under WS. These effects were higher for Shaandan 911 than for Shaandan 9. Furthermore, a significant effect was found for Shaandan 911 between N rates for all traits unlike Shaandan 9. Hence, we suggest that nitrogen should be applied to a water-sensitive variety to bring out its potential fully under drought. [source] Impact of the Cropping Systems of a Minor Dry Season on the Growth, Yields and Nitrogen Uptake of Maize (Zea mays L) Grown in the Humid Tropics during the Major Rainy SeasonJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 6 2003U. R. Sangakkara Abstract A field study evaluated the residual effect of a cropping system in two minor (dry) seasons on the productivity pattern and nitrogen utilization of a maize crop grown in the subsequent major (wet) seasons. The cropping systems established in the minor seasons, where evaporation exceeds rainfall, were either monocultures of maize (Zea mays L), or maize intercropped with either common bean (Phaseolus vulgaris L) or sunhemp (Crotolaria juncea L). In addition, monocultures of two green manures, namely sunhemp (Crotolaria juncea) or Tithonia (Tithonia diversifolia), were established. The residues of maize and beans and the green manures were incorporated at the end of the minor season; at the onset of rains in the major season, maize crops were established on the same plots. Germination of maize was not affected by the previous cropping system. In contrast, crop growth and yields of maize and nitrogen utilization were affected by the previous cropping system. Optimum growth and highest yields were procured in maize that was grown after a green manure crop. Similarly, although the yields were high, the planting of a green manure crop reduced nitrogen utilization by maize in the major season, thereby indicating its potential contribution to sustainability, due to its lower mining of soil nitrogen. On the basis of the results of this two-year study, the impact of cropping systems in minor seasons on the productivity of maize, a very important highland cereal in the tropics, grown under rain-fed conditions in a major season, is presented. [source] Varietal Differences in Development of Maize (Zea mays L.) Seedlings on Compacted SoilsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2001L. O. Soyelu Differences among open-pollinated tropical maize (Zea mays L.) varieties in seedling development and establishment on compacted soils were studied. Soil dry density was used as an index of compaction. Three soil compaction levels and 12 traits associated with development and establishment of maize seedlings were investigated. A control (without compaction) was also included. Varietal differences were observed for most traits measured. Genetic differences for seedling development on compacted soil were detected. Varietal differences contributed about three times the contribution of compaction to total variability in the traits. Better seedling development and performance were obtained in moderately compacted soil than in the control. Shoot length, shoot dry weight and per cent dry matter in roots were good indicators of the tolerance of maize seedlings to compaction. A physiological strategy for maize seedling establishment on compacted soil was proposed. The implications of the results for seed testing were also highlighted. It was concluded that consideration should be given to the genotype of maize destined for use in ecologies prone to high soil densities. All varieties of maize grown in an agroecological zone could be screened to identify genotypes tolerant of higher soil densities. The seeds could then be multiplied and distributed to farmers. Sortenunterschiede in der Entwicklung von Mais (Zea mays L.)-Sämlingen in verdichteten Böden Sortenunterschiede der Sämlingsentwicklung und des Aufwuchses wurden in verdichteten Böden bei fremdbestäubenden tropischen Mais (Zea mays L.)-Sorten untersucht. Die Bodentrockendichte wurde als Index für die Verdichtung verwendet. Drei Verdichtungsstärken und zwölf Behandlungen im Zusammenhang mit der Entwicklung und dem Anwuchs von Maissämlingen wurden untersucht. Eine Kontrolle (ohne Bodenverdichtung) wurde berücksichtigt. Sortenunterschiede wurden für die meisten Eigenschaften gemessen. Genetische Differenzen der Sämlingsentwicklung in verdichteten Böden konnten beobachtet werden. Sortendifferenzen trugen etwa dreifach im Vergleich zur Bodenverdichtung im Hinblick auf die Gesamtvariabilität der Eigenschaften bei. Bessere Sämlingentwicklung und Sämlingsleistung wurden an moderat verdichteten Böden im Vergleich zur Kontrolle beobachtet. Die Sprosslänge, das Sprosstrockengewicht und die Trockenmasse prozent in Wurzeln gaben gute Hinweise hinsichtlich der Toleranz der Maissämlinge gegenüber Bodenverdichtung. Eine physiologische Strategie für die Maissämlingsentwicklung in verdichteten Böden wird vorgeschlagen. Die Bedeutung der Ergebnisse für Samentestzwecke wurde betont. Es wird angenommen, dass Genotypen für den Anbau in ökologischen Bedingungen, die starke Bodenverdichtungen aufweisen, berücksichtigt werden sollten. Da viele Maissorten in agroökologischen Gebieten angebaut werden, sollten diese getestet werden, um Genotypen mit Toleranz gegenüber stärkerer Bodenverdichtung zu identifizieren. Diese Samen könnten dann vermehrt und an Landwirt abgegeben werden. [source] Evaluating Tripsacum -introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae)JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2009D. A. Prischmann Abstract Maize (Zea mays L.) is a valuable commodity throughout the world, but corn rootworms (Chrysomelidae: Diabrotica spp.) often cause economic damage and increase production costs. Current rootworm management strategies have limitations, and in order to create viable management alternatives, researchers have been developing novel maize lines using Eastern gamagrass (Tripsacum dactyloides L.) germplasm, a wild relative of maize that is resistant to rootworms. Ten maize Tripsacum -introgressed inbred lines derived from recurrent selection of crosses with gamagrass and teosinte (Zea diploperennis Iltis) recombinants and two public inbred lines were assessed for susceptibility to western corn rootworm (Diabrotica virgifera virgifera LeConte) and yield in a two-year field study. Two experimental maize inbred lines, SDG11 and SDG20, had mean root damage ratings that were significantly lower than the susceptible public line B73. Two other experimental maize inbred lines, SDG12 and SDG6, appeared tolerant to rootworm damage because they exhibited yield increases after rootworm infestation in both years. In the majority of cases, mean yield per plant of experimental maize lines used in yield analyses was equal to or exceeded that of the public inbred lines B73 and W64A. Our study indicates that there is potential to use Tripsacum -introgressed maize germplasm in breeding programs to enhance plant resistance and/or tolerance to corn rootworms, although further research on insect resistance and agronomic potential of this germplasm needs to be conducted in F1 hybrids. [source] A Novel Mitogen-Activated Protein Kinase Gene in Maize (Zea mays), ZmMPK3, is Involved in Response to Diverse Environmental CuesJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2010Jinxiang Wang In search for components of mitogen-activated protein kinase (MAPK) cascades in maize (Zea mays) involved in response to abscisic acid (ABA) stimulus, a novel MAPK gene, ZmMPK3, from ABA-treated maize leaves cDNA was isolated and characterized. The full length of the ZmMPK3 gene is 1 520 bp and encodes a 376 amino acid protein with a predicted molecular mass of 43.5 kD and a pI of 5.83. ZmMPK3 contains all 11 MAPK conserved subdomains and the phosphorylation motif TEY. Amino acid sequence alignment revealed that ZmMPK3 shared high identity with group-A MAPK in plants. A time course (30,360 min) experiment using a variety of signal molecules and stresses revealed that the transcripts level of ZmMPK3 accumulated markedly and rapidly when maize seedlings were subjected to exogenous signaling molecules: ABA, H2O2, jasmonic acid and salicylic acid, various abiotic stimuli such as cold, drought, ultraviolet light, salinity, heavy metal and mechanical wounding. Its transcription was also found to be tissue-specific regulated. Here, we show that ABA and H2O2 induced a significant increase in the ZmMPK3 activity using immunoprecipitation and in-gel kinase assay. Furthermore, the results showed that the ZmMPK3 protein is localized mainly to the nucleus. These results suggest that the ZmMPK3 may play an important role in response to environmental stresses. [source] Excess nickel,induced changes in antioxidative processes in maize leavesJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2007Praveen Kumar Abstract Maize (Zea mays L. cv. 777) plants grown in hydroponic culture were treated with 100 µM NiSO4 (moderate nickel (Ni) excess). In addition to growth parameters, metabolic parameters representative of antioxidant responses in leaves were assessed 24 h and 3, 7, and 14 d after initiating the Ni treatment. Extent of oxidative damage was measured as accumulation of malondialdehyde and hydrogen peroxide in leaves 7 and 14 d after treatment initiation. Apart from increasing membrane-lipid peroxidation and H2O2 accumulation, excess supply of Ni suppressed plant growth and dry mass of shoots but increased dry mass of roots and decreased the concentrations of chloroplastic pigments. Excess supply of Ni, though inhibited the catalase (EC 1.11.1.6) activity, increased peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), and superoxide dismutase (EC 1.15.1.1) activities. Localization of isoforms of these enzymes (peroxidase, ascorbate peroxidase, and superoxide dismutase) on native gels also revealed increases in the intensities of pre-existing bands. Enhanced activities of peroxidase, ascorbate peroxidase, and superoxide dismutase, however, did not appear to be sufficient to ameliorate the effects of excessively generated reactive oxygen species due to excess supply of Ni. [source] Sensitive enzyme-linked immunosorbent assay and rapid one-step immunochromatographic strip for fumonisin B1 in grain-based food and feed samplesJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 6 2010Chang-Min Shiu Abstract BACKGROUND: Maize contaminated with mycotoxin fumonisin B1 poses a global threat to agricultural production. In this study, polyclonal antibodies (pAb) specific to fumonisin B1 were generated from rabbits immunised with fumonisin B1,keyhole limpet haemocyanin (KLH). These antibodies were used to establish a sensitive competitive direct enzyme-linked immunosorbent assay (cdELISA) and gold nanoparticle immunochromatographic strip for detecting fumonisin B1 levels in maize-based foods and feeds. RESULTS: In cdELISA, fumonisins B1, B2 and B3 at concentrations of 0.42, 0.58 and 81.5 ng mL,1 respectively caused 50% inhibition (IC50) of binding of fumonisin B1,horseradish peroxidase (HRP) to the antibodies. Effective on-site detection of fumonisin B1 was achieved by developing a rapid and sensitive pAb-based gold nanoparticle immunochromatographic strip. This strip had a detection limit of 5 ng mL,1 for fumonisin B1 in maize-based samples. Additionally, the whole analytical process could be completed within 10 min. Close examination of 15 maize-based samples by cdELISA revealed that 11 were fumonisin-positive, with a mean concentration of 435 ± 20.1 ng g,1. These results correlated well with those obtained by immunochromatographic strip. CONCLUSION: Both cdELISA and immunochromatographic strip methods established in this study are sensitive for rapid detection of fumonisins in agricultural commodities. Copyright © 2010 Society of Chemical Industry [source] Prospects for using marker-assisted breeding to improve maize production in AfricaJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 5 2008Robyn Stevens Abstract Maize (Zea mays L.) production in sub-Saharan Africa has historically been constrained by a number of biotic and abiotic factors, including drought, insects, disease, and weeds. New agricultural research involving genomics and molecular markers may assist plant breeders in developing new varieties that will benefit producers and consumers in this region. Over the past few decades, plant breeders have used molecular markers to identify numerous genomic regions affecting maize production and nutritional value. Marker-assisted selection (MAS) presents the potential to improve the efficiency of plant breeding by allowing for the transfer of these specific genomic regions of interest and accelerating the recovery of the elite parent background. However, to this point, few examples of successful MAS in breeding programs, particularly those with benefits in Africa, have been noted. This review discusses the use of molecular markers in the identification of quantitative trait loci (QTL) affecting the production and nutritional quality of maize, as well as the potential to use the results from the vast number of QTL studies that have been performed in MAS breeding programs. Copyright © 2008 Society of Chemical Industry [source] The effect of delayed harvest on moisture content, insect damage, moulds and aflatoxin contamination of maize in Mayuge district of UgandaJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 15 2005Archileo N Kaaya Abstract Field drying is a traditional practice carried out by farmers in Uganda and it is one of those practices reported to affect the postharvest quality of maize. A study was therefore conducted to establish the effects of delayed harvest on moisture content, insect damage, moulds and aflatoxin contamination of maize in Mayuge district. Sixteen farmers were selected from Bayitambogwe sub-county, eight from each of the villages of Bugodi and Musita. Maize was sampled from each farmer's field in 2003B and 2004A seasons at harvest stages of physiological maturity and after delayed harvest for 1, 2, 3 and 4 weeks. Each sample was analysed for mould incidence, moisture content, insect damage and aflatoxin contamination. In each season, mould incidence, insect damage and aflatoxin levels significantly (P < 0.05) increased with delayed time of harvest. Moisture content reduced with delayed harvest time but the maize did not dry to the required safe storage moisture content of ,15%. Seasonal effects were only significant for moisture content: the 2003B crop had consistently lower moisture content than 2004A crop. These results indicate that, for improved harvest quality of maize, farmers should harvest no later than 3 weeks after maize has attained physiological maturity. Copyright © 2005 Society of Chemical Industry [source] Maize: a new occupational allergen in the pharmaceutical industryALLERGY, Issue 7 2010C.-M. Maniu No abstract is available for this article. [source] Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invadersMOLECULAR PLANT PATHOLOGY, Issue 1 2008TAKAYUKI SHINDO ABSTRACT Papain-like cysteine proteases (PLCPs) play crucial roles in plant,pathogen/pest interactions. During these parasitic interactions, PLCPs act on non-self substrates, provoking the selection of counteracting inhibitors and other means to evade proteolysis. We review examples of PLCPs acting on molecular battlefields in the extracellular space, plant cytoplasm and herbivore gut. Examples are maize Mir1 (Maize inbred resistance 1), tomato Rcr3 (Required for Cladosporium resistance- 3), Pseudomonas AvrRpt2 and AurPphB, insect DvCAL1 (Diabrotica virgifera cathepsin L -like protease- 1) and nematode MiCpl1 (Meloidogyne incognita cathepsin L -like protease 1). The data suggest that PLCPs cleave specific proteins and that their translocation, activation and inhibition of PLCPs are tightly regulated. [source] Differential Regulation of Five Pht1 Phosphate Transporters from Maize (Zea mays L.)PLANT BIOLOGY, Issue 2 2006R. Nagy Abstract: Maize is one of the most important crops in the developing world, where adverse soil conditions and low fertilizer input are the two main constraints for stable food supply. Understanding the molecular and biochemical mechanisms involved in nutrient uptake is expected to support the development of future breeding strategies aimed at improving maize productivity on infertile soils. Phosphorus is the least mobile macronutrient in the soils and it is often limiting plant growth. In this work, five genes encoding Pht1 phosphate transporters which contribute to phosphate uptake and allocation in maize were identified. In phosphate-starved plants, transcripts of most of the five transporters were present in roots and leaves. Independent of the phosphate supply, expression of two genes was predominant in pollen or in roots colonized by symbiotic mycorrhizal fungi, respectively. Interestingly, high transcript levels of the mycorrhiza-inducible gene were also detectable in leaves of phosphate-starved plants. Thus, differential expression of Pht1 phosphate transporters in maize suggests involvement of the encoded proteins in diverse processes, including phosphate uptake from soil and transport at the symbiotic interface in mycorrhizas, phosphate (re)translocation in the shoot, and phosphate uptake during pollen tube growth. [source] Oxygen isotope enrichment (,18O) reflects yield potential and drought resistance in maizePLANT CELL & ENVIRONMENT, Issue 11 2009LLORENÇ CABRERA-BOSQUET ABSTRACT Measurement of stable isotopes in plant dry matter is a useful phenotypic tool for speeding up breeding advance in C3 crops exposed to different water regimes. However, the situation in C4 crops is far from resolved, since their photosynthetic metabolism precludes (at least in maize) the use of carbon isotope discrimination. This paper investigates the use of oxygen isotope enrichment (,18O) as a new secondary trait for yield potential and drought resistance in maize (Zea mays L). A set of tropical maize hybrids developed by the International Maize and Wheat Improvement Center was grown under three contrasting water regimes in field conditions. Water regimes clearly affected plant growth and yield. In accordance with the current theory, a decrease in water input was translated into large decreases in stomatal conductance and increases in leaf temperature together with concomitant 18O enrichment of plant matter (leaves and kernels). In addition, kernel ,18O correlated negatively with grain yield under well-watered and intermediate water stress conditions, while it correlated positively under severe water stress conditions. Therefore, genotypes showing lower kernel ,18O under well-watered and intermediate water stress had higher yields in these environments, while the opposite trend was found under severe water stress conditions. This illustrates the usefulness of ,18O for selecting the genotypes best suited to differing water conditions. [source] The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiationTHE PLANT JOURNAL, Issue 4 2007Graziana Taramino Summary Maize has a complex root system composed of different root types formed during different stages of development. The rtcs (rootless concerning crown and seminal roots) mutant is impaired in the initiation of the embryonic seminal roots and the post-embryonic shoot-borne root system. The primary root of the mutant shows a reduced gravitropic response, while its elongation, lateral root density and reaction to exogenously applied auxin is not affected. We report here the map-based cloning of the RTCS gene which encodes a 25.5 kDa LOB domain protein located on chromosome 1S. The RTCS gene has been duplicated during evolution. The RTCS-LIKE (RTCL) gene displays 72% sequence identity on the protein level. Both genes are preferentially expressed in roots. Expression of RTCS in coleoptilar nodes is confined to emerging shoot-borne root primordia. Sequence analyses of the RTCS and RTCL upstream genomic regions identified auxin response elements. Reverse transcriptase-PCR revealed that both genes are auxin induced. Microsynteny analyses between maize and rice genomes revealed co-linearity of 14 genes in the RTCS region. We conclude from our data that RTCS and RTCL are auxin-responsive genes involved in the early events that lead to the initiation and maintenance of seminal and shoot-borne root primordia formation. [source] Expression of Ht2 -related genes in response to the HT-Toxin of Exserohilum turcicum in MaizeANNALS OF APPLIED BIOLOGY, Issue 1 2010H. Wang Complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis was conducted to analyze differential expression of Ht2 -related genes between maize (Zea mays) near-isogenic lines (NILs), Huangzaosi (HZS) and HuangzaosiHt2 (HZSHt2), following treatment with a crude extract of the HT-toxin. Twenty-one transcript-derived fragments (TDFs), designated H1 to H21, were specifically expressed or upregulated in HZSHt2 following exposure to the HT-toxin. Among them, 4, 7, 4, 2, 2 and 2 TDFs were detected at 3, 6, 12, 24, 48 and 72 h after treatment, respectively. BLAST analysis showed that H1, H11, H13 and H15 are related to regulation of the defence response to environmental stresses. H3, H6 and H10 are associated with energy metabolism. H5, H17 and H18 are involved in photosynthesis. H9 is similar to ubiquitin-like domain containing CTD phosphatase. H8, H9, H16 and H20 are probably transcription factors. The genes associated with basal energy metabolism and signal of stress tolerance were mainly expressed at 3 h after treatment. Transcription factor and most genes for stress tolerance were expressed at 6 h after treatment. RT-PCR analysis demonstrated that H8 was upregulated in HZSHt2 only at 6 h after exposure to the HT-toxin and H13 was upregulated at 6 and 12 h. The full length cDNAs of H8 (GenBank accession number FJ600319) and H13 (FJ600320) were cloned. The deduced protein encoded by H8 cDNA showed 77% homology to the Plus-3 domain containing protein, which is found in yeast gene Rtf1. H13 cDNA encodes a QM-like protein, which is an important protein in plant tolerance to environmental stress. The mechanism regulating the resistance of Ht2 to the HT-toxin might involve a translation elongation factor or an upregulated QM-like protein. [source] Phenotyping approaches for physiological breeding and gene discovery in wheatANNALS OF APPLIED BIOLOGY, Issue 3 2009M. Reynolds Abstract Conceptual models of drought-adaptive traits have been used in breeding to accumulate complementary physiological traits (PT) in selected progeny, resulting in distribution of advanced lines to rain-fed environments worldwide by the International Maize and Wheat Improvement Center (CIMMYT). Key steps in PT breeding at CIMMYT include characterisation of crossing block lines for stress adaptive mechanisms, strategic crossing among parents that encompass as many target traits as possible and early generation selection (EGS) of bulks for canopy temperature (CT). The approach has been successful using both elite × elite crosses as well as three way crosses involving stress adapted landraces. Other EGS techniques that are amenable to high throughput include measurement of spectral reflectance indices and stomatal aperture-related traits. Their genetic- and cost-effectiveness are supported by realisation of genetic yield gains in response to trait selection, and by economic analysis, respectively. Continual reselection within restricted gene pools is likely to lead to diminishing returns, however, exotic parents can be used to introduce new allelic diversity. Examples include landraces from the primary gene pool, and products of inter-specific hybridisation with the secondary gene pool consisting of closely related wheat genomes. Both approaches have been successful in introducing stress-adaptive traits. The main problem with knowing which genetic resource to use in wide-crossing is the uncertainty with which phenotypic expression can be extrapolated from one genome/genepool to another because of their unimproved or undomesticated genetic backgrounds. Nonetheless, their PT expression can be measured and used as a basis for investing in crossing or wide crossing. Discovering the genetic basis of PT is highly complex because putative QTLs may interact with environment and genetic background, including genes of major effect. Detection of QTLs was improved in mapping populations where flowering time was controlled, while new mapping populations have been designed by screening potential parents that do not contrast in the Rht, Ppd and Vrn alleles. Association genetics mapping is another approach that can be employed for gene discovery using exclusively agronomically improved material, thereby minimising the probability of identifying yield QTLs whose alleles have been already improved by conventional breeding. [source] Narrow rows reduce biomass and seed production of weeds and increase maize yieldANNALS OF APPLIED BIOLOGY, Issue 2 2009A.B. Mashingaidze Abstract Smallholder farmers in southern African countries rely primarily on cultural control and hoe weeding to combat weeds, but often times, they are unable to keep up with the weeding requirements of the crop because of its laboriousness, causing them to incur major yield losses. Optimisation of crop planting pattern could help to increase yield and suppress weeds and to reduce the critical period of weed control and the weeding requirements to attain maximum yield. Experiments were carried out in Zimbabwe during two growing seasons to assess the effect of maize density and spatial arrangement on crop yield, growth and seed production of weeds and to determine the critical period for weeding. Planting maize at 60 cm row distance achieved higher yields and better weed suppression than planting at 75 or 90 cm row distance. Increasing crop densities beyond the customary three to four plants m,2 gave modest reductions in weed biomass but also diminished crop yields, probably because of increased competition for water and nutrient resources. Maize planted in narrow rows (60 cm) intercepted more radiation and suffered less yield reduction from delaying hoe weeding than those planted in wider rows (75 or 90 cm), and the duration of the weed-free period required to attain maximum grain yield was 3 weeks shorter in the narrow spacing than that in the 75- and 90-cm row spacings. Weeding was more effective in curtailing weed seed production in the narrow row spatial arrangements than in the wide row planting. The results of these studies show that narrow row spacings may reduce weeding requirements and increase yields. [source] Adapting wheat cultivars to resource conserving farming practices and human nutritional needsANNALS OF APPLIED BIOLOGY, Issue 4 2005R M TRETHOWAN Summary As farmers increasingly adopt resource conserving farming practices, there is a need for wheat cultivars that better adapt to the changing environment and the nutritional needs of people, particularly those living in developing countries. Improved adaptation to zero and minimum tillage, better water use efficiency, improved root health, durable resistance to foliar diseases and enhanced nutritional value of the grain are key selection criteria for plant breeders. Significant responses to selection for these constraints have been achieved at the International Maize and Wheat Improvement Center (CIMMYT), by selecting segregating populations and advanced lines in carefully managed tillage, moisture deficit and heat stressed environments, that correlate with key spring wheat growing environments globally. Root health has been improved through a combination of marker assisted selection and disease bioassays, and the nutritional value of wheat grain has been enhanced using genetic variation for high Fe and Zn grain content found among tetraploid wheat ancestral species. [source] Investigations on the digestibility and metabolizability of the major nutrients and energy of maize leaves and barnyard grass in grass carp (Ctenopharyngodon idella)AQUACULTURE NUTRITION, Issue 3 2010E.B. DONGMEZA Abstract In the uplands of northern Vietnam, culture of grass carp contributes significantly to income and household food security of Black Thai farmers. Maize is one of the most important upland crops and barnyard grass is the most important weed in the paddy rice fields. Thus, these are frequently used by small-scale fish farmers as fish feed. An 8-week feeding trial was conducted simultaneously in a recirculation and in a respirometric system to determine the digestibility and metabolizability of the nutrients of maize leaves and barnyard grass, to assess their crude protein, lipid and energy conversion and to estimate the energy allocation in grass carp. The following diets were used: diet ,A' (reference diet) containing 39% crude protein with 19.8 MJ kg,1 gross energy; diets ,B', ,C' and ,D', which contained the same amount of the reference diet as the control diet, supplemented with a known amount of dried barnyard grass, dried maize leaves or fresh maize leaves, respectively. Five fish were assigned to each treatment in each experimental unit. Reference and test diets were fed to fish and faecal samples were collected and the oxygen consumption was measured in order to set up an energy budget of the fish over the whole experimental period. The weekly development of the body weight was recorded. The body weight gain of the fish fed diet D was significantly higher than that of the group fed diet A, which also in turn was significantly higher than that of fish fed diet B or C. The apparent digestibility coefficients (ADC) of nutrients and gross energy for the different experimental diets in fish kept in the aquaria were, for diets A, B, C and D respectively, 94.1%, 60.9%, 70.5% and 84.7% for protein, 91.3%, 60.7%, 76.8% and 71.8% for lipid; 95.9%, 44.5%, 60.6% and 69.1% for gross energy. The partial ADC of plant leaf ingredients were determined and barnyard grass and dried maize leaves were found to be not only poorly digestible but having negative impact on the digestibility of the reference diet, while fresh maize leaves were well digested. The results of the present study indicated that fresh maize leaves have a good potential to be used as supplement in diets for grass carp. [source] How Did Mississippians Prepare Maize?ARCHAEOMETRY, Issue 1 2004The Application of Compound-Specific Carbon Isotope Analysis to Absorbed Pottery Residues From Several Mississippi Valley Sites A newly developed compound-specific stable carbon isotope technique allows the detection of maize in absorbed organic pottery residues. This method was applied to absorbed organic residues from a variety of Mississippi Valley potsherds, and successfully identified maize components. Maize was cooked in sampled vessels less often than expected, but otherwise fitted expected patterns of maize use derived from stable carbon isotope analysis of human bone from the region. Absorbed organic pottery residue analysis is useful in determining pottery use, particularly in concert with other analytical methods. [source] Beyond semi-dwarf wheat yield increases: impacts on the Australian wheat industry of on-going spillovers from the International Maize and Wheat Improvement CenterAUSTRALIAN JOURNAL OF AGRICULTURAL & RESOURCE ECONOMICS, Issue 4 2007John P. Brennan Wheat genetic materials developed from research at the International Maize and Wheat Improvement Center (CIMMYT) in Mexico for developing countries have provided spillover benefits to Australia. Varieties developed from those genetic materials have resulted in yield increases in Australia. While the initial impact came through the introduction of higher-yielding semi-dwarf wheat crops, those impacts have continued in the post-semidwarf period. CIMMYT's success in developing countries has also reduced the world price for wheat. While the lower prices affect returns in Australia, the increased yields in Australia from the CIMMYT spillovers from both the semi-dwarfs and the post-semidwarf phases have provided benefits to Australia averaging A$30 million per year. [source] |