Home About us Contact | |||
MAS NMR (ma + nmr)
Terms modified by MAS NMR Selected AbstractsStructural Studies of ,-Cyclodextrin and Permethylated ,-Cyclodextrin Inclusion Compounds of Cyclopentadienyl Metal Carbonyl ComplexesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2006Susana S. Braga Abstract [CpM(CO)nCl] complexes with M = Fe (n = 2) and Mo (n = 3) have been immobilised in plain ,-cyclodextrin (,-CD) and permethylated ,-CD (TRIMEB) by methods tailored according to the stabilities and solubilities of the individual components. Four adducts were obtained with a 1:1 host/guest stoichiometry. The compounds were studied by powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), 13C{1H} CP/MAS NMR and FTIR spectroscopy. A comparison of the experimental powder XRD data for the TRIMEB/[CpMo(CO)3Cl] inclusion compound with reference patterns revealed that the crystal packing is very similar to that reported previously for a TRIMEB/ethyl laurate inclusion compound. The unit-cell parameters refined to a = 14.731, b = 22.476, c = 27.714 Å (volume = 9176.3 Å3), and the space group was confirmed as P212121. A hypothetical structural model of the inclusion compound was subsequently obtained by global optimisation using simulated annealing. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Structural studies of 1-(2-hydroxy-4-bromophenyl)-4-methyl-4-imidazolin-2-onesJOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 6 2001Michal K. Cyra Abstract The crystal structure of 1-(2-hydroxy-4-bromophenyl)-3-methyl-4-methyl-4-imidazolin-2-one was determined by x-ray diffraction. The structure is stabilized by intermolecular hydrogen bonds formed between the 2-hydroxy and central groups. Molecular modelling including ab initio calculations at the HF/6,31+G** level revealed that in the gas phase the molecule is stabilized by an intramolecular hydrogen bond. The derivatives with 3-alkyl, benzyl and phenyl substituents were studied by 13C NMR including solid-state 13C CP/MAS NMR [for 1-(2-hydroxy-4-bromophenyl)-3-methyl-4-methyl-4-imidazolin-2-one] and FT-IR methods. The differences in chemical shifts ,,=,,liquid,,,,solid are significant for aromatic carbons C(3) (,2.9,ppm), C(4) (3.6,ppm) and C(5) (,3.9,ppm) and, on the other side of the imidazoline ring, of C(7) (,1.5,ppm). These carbons are adjacent to N(1),C(4), and are subject to the largest changes of the environment during reorientation of the imidazolin-2-one moiety. Copyright © 2001 John Wiley & Sons, Ltd. [source] Evaluation of HPLC columns: A study on surface homogeneity of chemically bonded stationary phasesJOURNAL OF SEPARATION SCIENCE, JSS, Issue 3-4 2003Bogus, aw Buszewski Abstract The aim of the current work is to study the heterogeneity of the adsorbent surface on the basis of physicochemical investigations and chromatographic tests. A series of packing materials with octadecyl chains chemically bonded to a silica matrix were prepared for this purpose. The surface and structural properties of bare silica and silica-based octadecyl phases were characterized by porosimetry, elemental analysis, 29Si CP/MAS NMR, etc. The most advanced characterization methods based on adsorption microcalorimetry (heat of wetting) measurements were employed to obtain information about the heterogeneity and topography of unmodified and modified silica gel. For the chromatographic study, these phases were evaluated on the basis of the retention data under non-aqueous conditions. A test series of solutes with various chemical properties, such as pK a values, was used. It was found that heterogeneity of the packing surface results in low HPLC resolution. Use of a non-aqueous mobile phase (n -hexane) reduces analytical interference by eliminating hydrophobic interactions between alkyl ligands and the analyte. [source] Fully Crosslinked Poly[cyclotriphosphazene- co -(4,4,-sulfonyldiphenol)] Microspheres via Precipitation Polymerization and Their Superior Thermal PropertiesMACROMOLECULAR REACTION ENGINEERING, Issue 1 2007Lu Zhu Abstract Fully crosslinked, stable poly[cyclotriphosphazene- co -(4,4,-sulfonyldiphenol)] (PZS) microspheres have been prepared via the polycondensation between hexachlorocyclotriphosphazene and 4,4,-sulfonyldiphenol by precipitation polymerization. The diameter of the PZS microspheres ranged from 0.6 to 1.0 µm with the specific surface area of the microspheres ranging from 11.7 to 10.1 m2,·,g,1. The formation of the non-porous microspheres was observed to obey an oligomeric species absorbing mechanism. The fully crosslinked chemical structure of the PZS microspheres were determined by IR, CP/MAS NMR, XRD, and EDX. No glass-transition temperature was observed and the onset of the thermal-degradation temperature was 542,°C. Thermal stability of the PZS microspheres by the precipitation polycondensation was significantly improved as compared with crosslinked microspheres produced by addition polymerizations. [source] 31P CP/MAS NMR of polycrystalline and immobilized phosphines and catalysts with fast sample spinningMAGNETIC RESONANCE IN CHEMISTRY, Issue 6 2003S. Reinhard Abstract Cross-polarization (CP) at fast magic angle spinning (MAS) frequencies leads to a splitting of the Hartmann,Hahn (HH) matching profile into a centerband and additional bands of higher orders. The matching profiles differ with the substance categories. Therefore, signal intensity is usually lost, when e.g. the routine standard NH4H2PO4 is used for optimizing the 1H,31P HH match prior to measuring phosphines and their metal complexes in polycrystalline or immobilized form. Here, a variety of model compounds, such as Ph2PCH2CH2PPh2 and (CO)2Ni(PPh3)2, which can be used as 31P CP standards for analogous substances or materials are presented. Investigating the influences of MAS frequency, contact time, 1H pulse power and sample volume on the matching profiles of the model compounds leads to general trends. Thereby, a new strategy for measuring difficult samples with CP at high MAS rates has been developed: their optimum CP parameters are derived from the most intense maxima in the HH matching profiles of the corresponding model compounds. This new strategy is compared with variations of a conventional ramp sequence. Although the latter generally provide smaller signal half-widths, the new strategy leads to higher signal intensities. The new method was successfully applied to polycrystalline and immobilized phosphines and catalysts. Copyright © 2003 John Wiley & Sons, Ltd. [source] The role of irregular unit, GAAS, on the secondary structure of Bombyx mori silk fibroin studied with 13C CP/MAS NMR and wide-angle X-ray scatteringPROTEIN SCIENCE, Issue 8 2002Tetsuo Asakura Abstract Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room temperature and from an aqueous solution. The primary structure is mainly Ala-Gly alternative copolypeptide, but Gly-Ala-Ala-Ser units appear frequently and periodically. Thus, this study aims at elucidating the role of such Gly-Ala-Ala-Ser units on the secondary structure. The sequential model peptides containing Gly-Ala-Ala-Ser units selected from the primary structure of B. mori silk fibroin were synthesized, and their secondary structure was studied with 13C CP/MAS NMR and wide-angle X-ray scattering. The 13C isotope labeling of the peptides and the 13C conformation-dependent chemical shifts were used for the purpose. The Ala-Ala units take antiparallel ,-sheet structure locally, and the introduction of one Ala-Ala unit in (Ala-Gly)15 chain promotes dramatical structural changes from silk I (repeated ,-turn type II structure) to silk II (antiparallel ,-sheet structure). Thus, the presence of Ala-Ala units in B. mori silk fibroin chain will be one of the inducing factors of the structural transition for silk fiber formation. The role of Tyr residue in the peptide chain was also studied and clarified to induce "locally nonordered structure." [source] Crystal Structure, Solid-State NMR Spectroscopic and Photoluminescence Studies of Organic-Inorganic Hybrid Materials (HL)6[Ge6(OH)6(hedp)6]·2(L)·nH2O, L = hqn or phen,EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2006Luís Mafra Abstract Two germanium,hedp4, solids with heteroaromatic amines 8-hydroxyquinoline (hqn) and 1,10-phenanthroline (phen), (HL)6[Ge6(OH)6(hedp)6]·2(L)·nH2O (L = hqn or phen), in I and II respectively, have been prepared and characterised by single-crystal XRD, thermogravimetry, FTIR and UV/Vis spectroscopy. The complex hydrogen-bond networks, particularly in compound I, have been studied by advanced high-resolution solid-state NMR spectroscopy that combines homonuclear recoupling techniques (two-dimensional 1H- 1H DQF and 1H- 1H RFDR MAS NMR) and combined rotation and multiple-pulse spectroscopy (two-dimensional 1H- 1H FS-LG, 1H- 31P FS-LG). The fine details of the crystal structure of I have been elucidated, mainly those involving the ,,, stacking of 8-hydroxyquinoline and the relative orientation of adjacent such molecules. Compound II exhibits an emission from the lowest triplet-state energy (,,,* 0-phonon transition) of the aromatic rings at 320 nm (31250 cm,1) from 14 K to room temperature. In contrast, the triplet emission of I at 530 nm (18868 cm,1) is only detected at low temperature, because of thermally activated non-radiative mechanisms. The emission spectra of I and II display a lower-energy component with a larger life time, which results from the formation of an excimer state that originated from the ,,, phenanthroline and hydroxyquinoline interactions, respectively. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] In Situ Synthesis, Characterization of SiPMo-X, and Different Catalytic Properties of SiPMo-X and SiPW-XEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2006Chunfeng Shi Abstract SBA-15 frameworks with encapsulated Keggin type heteropolyacids (HPAs) were synthesized in situ under strongly acidic conditions (pH,<,0). During the hydrolysis of tetraethyl orthosilicate (TEOS), a P- and a Mo source were added into the initial sol,gel system to form Keggin type HPAs. The texture of the final products was studied by the N2 adsorption,desorption isotherms and transmission electron microscopy (TEM), and their structure was systematically characterized by X-ray diffraction (XRD), UV/Vis diffuse reflectance- (DRS), infrared- (IR), and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Characterization results suggest that the samples show very ordered hexagonal mesostructure, and the HPAs that are incorporated into the framework of meso-silica are insoluble during catalysis. Results of catalytic tests indicate that the materials demonstrated catalytic activity comparable with or even surpassing those of the bulk HPAs in catalytic tests implementing chemical reactions of bulky molecules (1,3,5-triisopropylbenzene cracking, esterification of benzoic acid with tert -butyl alcohol, and 2,3,6-trimethylphenol hydroxylation with H2O2). Additionally, some other properties, such as easy separation and stability when recycled, ensure their potential applications in the chemical industries. Here, we report not only the in situ synthesis and characterization of SiPMo-X, but also the difference in the catalytic properties of SiPMo-X and SiPW-X. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Incorporation of Aluminium and Iron into the Zeolite MCM-58EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 6 2005Gabriela Ko Abstract The hydrothermal synthesis of zeolite MCM-58 is investigated with N -benzylquinuclidinium bromide as a structure-directing agent in order to isomorphously substitute aluminium or iron for silicon. Al-MCM-58 was synthesised in a wide range of nSi/nAl ratios (from 19 to 56), and Fe-MCM-58 was successfully prepared in a narrower range of nSi/nFe ratios (from 18 to 36). The obtained products were characterised by XRD, SEM, 27Al MAS NMR, 29Si MAS NMR, FTIR, and ESR spectroscopy. Two different calcination procedures, viz. in a stream of nitrogen and air or in a stream of ammonia, were used in order to modify the acid sites in the zeolite. FTIR spectroscopy before and after the adsorption of [D3]acetonitrile and pyridine was employed to determine the concentration and type of the acid sites. The acid forms of Al(Fe)-MCM-58 are characterised by the vibrations of bridging Si,OH,Al(Fe) groups at 3628 cm,1 and 3564 cm,1 (Al-MCM-58) or 3646 cm,1 and 3520 cm,1 (Fe-MCM-58). The acid sites of both zeolites Al-MCM-58 and Fe-MCM-58 are accessible for [D3]acetonitrile and pyridine, and all materials contain substantial numbers of Lewis sites (Al-MCM-58: 50,% of the total acid sites; Fe-MCM-58: 90,%) over the whole range of nSi/nAl (nSi/nFe) ratios studied. Only a small increase in the concentration of Brønsted acid sites was achieved after calcination of the as-synthesised samples in a flow of ammonia. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Multiple Functionalization of Mesoporous Silica in One-Pot: Direct Synthesis of Aluminum-Containing Plugged SBA-15 from Aqueous Nitrate Solutions,ADVANCED FUNCTIONAL MATERIALS, Issue 1 2008Y. Wu Abstract Aluminum-containing plugged mesoporous silica has been successfully prepared in an aqueous solution that contains triblock copolymer templates, nitrates, and silica sources but without using mineral acid. The acidity of the solution can be finely tuned from pH 1.4 to 2.8 according to the amount of the introduced aluminum species which ranged from an Al/Si molar ratio of 0.25/1 to 4.0/1. The aluminum nitrate additive in the starting mixture, along with the weak acidity produced by the nitrates, contributes to the formation of plugged hexagonal structures and the introduction of different amounts of aluminum species into the mesostructure. Characterization by X-ray diffraction, transmission electron microscopy, and N2 sorption measurements show that the Al-containing plugged silicas possess well-ordered hexagonal mesostructures with high surface areas (700,860 m2,g,1), large pore volume (0.77,1.05 cm3,g,1) and, more importantly, combined micropores and/or small mesopores in the cylindrical channels. Inductively coupled plasma,atomic emission spectrometry results show that 0.7,3.0 wt,% aluminum can be introduced into the final samples. 27Al MAS NMR results display that about 43,60% aluminum species are incorporated into the skeleton of the Al-containing silicas and the amount of the framework aluminum increases as the initial added nitrates rises. Scanning electron microscopy images reveal that the directly synthesized Al-containing plugged silica has a similar morphology to that of traditional SBA-15. Furthermore, the Al-containing plugged samples have excellent performances in the adsorption and the catalytic decomposition of isopropyl alcohol and nitrosamine. Finally, the direct synthesis method is used to produce plugged mesoporous silicas that contain other metals such as chromium and copper, and the resultant samples also show good catalytic activities. [source] Hybrid Inorganic-Organic Materials Carrying Tertiary Amine and Thiourea Residues Tethered on Mesoporous Silica Nanoparticles: Synthesis, Characterization, and Co-Operative CatalysisADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2009Alessandra Puglisi Abstract Mesoporous silica nanoparticles carrying different loadings of tertiary amine and thiourea residues (residues ratios 53/47, 68/32, and 22/78, respectively) were synthesized by the co-condensation method and fully characterized by CP MAS NMR, powder XRD, SEM, BET, BJH and FT-IR techniques. These materials were tested as bifunctional catalysts in the conjugate addition of acetylacetone to 2-nitrostyrene, a reaction that under solvent-free conditions occurred in quantitative yield. By carrying out several experiments with the bifunctional catalysts featuring different molar ratios of active sites, and with different combinations of monofunctional supported and non-supported catalyst, the co-operativity of the tertiary amine and thiourea residues in catalyzing the reaction was demonstrated. The use of the bifunctional catalyst was extended to the addition of acetylacetone to an activated imine. Catalyst recycling for a total of three reaction cycles was demonstrated without significant erosion of activity. [source] Air-Stable and Highly Active Dendritic Phosphine Oxide- Stabilized Palladium Nanoparticles: Preparation, Characterization and Applications in the Carbon-Carbon Bond Formation and Hydrogenation ReactionsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2008Lei Wu Abstract Dendrimer-stabilized palladium nanoparticles were formed in the reduction of palldium bis(acetylacetonate) [Pd(acac)2] in the presence of phosphine dendrimer ligands using hydrogen in tetrahydrofuran. The resulting Pd nanoparticles were characterized by TEM, 31P,NMR and 31P MAS NMR. The results indicated that the dendritic phosphine ligands were oxidized to phosphine oxides. These dendrimer-stabilized Pd nanoparticles were demonstrated to be efficient catalysts for Suzuki and Stille coupling reactions and hydrogenations. The dendritic wedges served as a stabilizer for keeping the nanoparticles from aggregating, and as a vehicle for facilitating the separation and/or the recycling of the Pd catalyst. In the case of the Suzuki coupling reaction, these Pd nanoparticles exhibited high catalytic efficiency (TON up to 65,000) and air stability as compared with the commonly used homogeneous catalyst tetrakis(triphenylphosphine)palladium [Pd(PPh3)4]. In addition, the results obtained from the bulky dendritic substrate suggest that the Pd nanoparticles might act as reservoir of catalytically active species, and that the reaction is actually catalyzed by the soluble Pd(0) and/or Pd(II) species leached from the nanoparticle surface. [source] Structure and composition of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2 capture and H2 productionAICHE JOURNAL, Issue 6 2009Rajnish Kumar Gas hydrates from a (40/60 mol %) CO2/H2 mixture, and from a (38.2/59.2/2.6 mol %) CO2/H2/C3H8 mixture, were synthesized using ice powder. The gas uptake curves were determined from pressure drop measurements and samples were analyzed using spectroscopic techniques to identify the structure and determine the cage occupancies. Powder X-ray diffraction (PXRD) analysis at ,110°C was used to determine the crystal structure. From the PXRD measurement it was found that the CO2/H2 hydrate is structure I and shows a self-preservation behavior similar to that of CO2 hydrate. The ternary gas mixture was found to form pure structure II hydrate at 3.8 MPa. We have applied attenuated total reflection infrared spectroscopic analysis to measure the CO2 distribution over the large and small cavities. 1H MAS NMR and Raman were used to follow H2 enclathration in the small cages of structure I, as well as structure II hydrate. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Investigation of the Structural Characterization of Mesoporous Molecular Sieves MCM-41 from SepioliteJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2007Shengming Jin Mesoporous molecular sieves, MCM-41, were synthesized from sepiolite using acid leaching, followed by hydrothermal reconstruction and then calcinations at 540°C for 5 h. The structures and the porosity of MCM-41 were investigated by means of small-angle X-ray diffraction patterns, Brunaer-Emmett-Teller (BET), 29Si MAS NMR, Fourier transform infrared (FTIR), and high resolution transmission electron microscope (HRTEM) methods. The results showed that the hexagonal MCM-41 was formed in an alkaline solution of pH 12, when crystallization was carried out at 100°C for 24 h. The specific surface area, pore diameter, and pore volumes of MCM-41 from sepiolite were 1036 m2/g, 2.98 nm, and 1.06 cm3/g, respectively. 29Si MAS NMR results revealed that amorphous silica decomposed into Si,O chains consisting of two layers of Si atoms, with Q3 configurations resulting in an increase in the fraction of Q3 configuration during the crystallization of post-Mg-extraction sepiolite. The IR results illustrated that the complex of ,,SiO,,CTA+ was formed during the synthesis of MCM-41 from post-Mg-extraction sepiolite. [source] Permeability and Conductivity Studies on Ionomer-Polysilsesquioxane Hybrid MaterialsMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 3 2006Chedarampet S. Karthikeyan Abstract Summary: Hybrid materials based on sulphonated poly(ether ether ketone) (SPEEK, ionomer) and (RSiO1.5)n network (polysilsequioxane) were prepared by sol-gel process. Two different precursors namely aminopropyl trimethoxysilane (APTMS) and imidazoleglycidoxypropyl trimethoxysilane (IGPTMS) were utilized to generate (RSiO1.5)n in SPEEK matrix by sol-gel process. 29Si MAS NMR confirmed the formation of RSiO3/2 network structure inside the matrix. Characterisation of the hybrid materials showed lower methanol and water permeability compared to the plain SPEEK. They are therefore promising materials as membranes for direct methanol fuel cells applications. The hybrid material derived from amino group was more effective in decreasing the permeability than the material derived from imidazole group. However, the proton conductivity of the latter was higher than the material derived from amino group. The results indicate that hybrid material prepared from imidazole containing silane is more suitable as a membrane for direct methanol fuel cell than the one prepared from amino carrying silane because it fulfils the two main requirements, namely low methanol permeability and reasonably good proton conductivity. Figure shows a network of silica phase in SPEEK matrix. [source] Synthesis of Organosilica Films Through Consecutive Sol/Gel Process and Cationic PhotopolymerizationMACROMOLECULAR MATERIALS & ENGINEERING, Issue 4 2010Davy-Louis Versace Abstract The cationic photopolymerization of epoxy polysilsesquioxane resins synthesized through a acid-catalyzed sol/gel process is studied. To elucidate the effect of the organic substituent on sol/gel reaction kinetics, two organotrimethoxysilanes with different organic groups were employed. Effects of UV irradiation on the microstructure of the epoxy-functional polysilsesquioxanes were also studied. 29Si solid-state MAS NMR proved that UV-generated Brönsted acids favored a work-up of the silicate network by promoting new sol/gel condensation reactions. There was a significant slowdown of epoxy conversion rates with increasing sol aging, which may be due to a competition between an active chain end and an activated monomer mechanism for the epoxy cationic polymerization. [source] Silica nanoparticle addition to control the calcium-leaching in cement-based materialsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2006J. J. Gaitero Abstract The calcium leaching of the cement hydrated matrix is of vital importance for constructions like water containers, dams, bridges, etc which have to be in contact with water during their lifetime. The aim of this work is the study of the reduction of such a negative phenomenon by the addition of silica nanoparticles. Several characterisation techniques such as 29Si MAS NMR, X-ray diffraction, mercury intrusion porosimetry and EDX-microanalysis have been used to evaluate the effect of the nanoparticles in the cement matrix nanostructure and in their impact on the evolution of the Ca leaching throughout time. Subsequent analysis of the results indicates that silica nanoparticles can reduce the Ca-leaching both decreasing the amount of portlandite in the matrix and controlling the degradation rate of the C,S,H gel. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Coloured inorganic-organic films on glassPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 3 2007K. Cholewa-Kowalska Abstract Two kinds of inorganic-organic hybrid materials (A and B class) were obtained in the form of thin films on glass. As starting materials were used: PhTES + TEOS (A class); PhTES + GPTMS + TBA (B class). Hybrid materials were coloured using ORASOL type dyes. The coloured coatings were put on glass by dip-coating technique. The structure of hybrid matrix was examined by spectroscopic methods: FTIR, 29Si MAS NMR, 27Al MAS NMR. On this base structural units of hybrid were identified. UV/VIS spectra of thin films were measured directly after obtainment as well as after thermal and chemical treatment of samples. It has been found that UV/VIS spectra originate from electron transitions between ligands and transition metal ions. The coloured centres in hybrid matrix show good thermal and chemical resistance. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Chemical shift assignment of the transmembrane helices of DsbB, a 20-kDa integral membrane enzyme, by 3D magic-angle spinning NMR spectroscopyPROTEIN SCIENCE, Issue 2 2008Ying Li Abstract The Escherichia coli inner membrane enzyme DsbB catalyzes disulfide bond formation in periplasmic proteins, by transferring electrons to ubiquinone from DsbA, which in turn directly oxidizes cysteines in substrate proteins. We have previously shown that DsbB can be prepared in a state that gives highly resolved magic-angle spinning (MAS) NMR spectra. Here we report sequential 13C and 15N chemical shift assignments for the majority of the residues in the transmembrane helices, achieved by three-dimensional (3D) correlation experiments on a uniformly 13C, 15N-labeled sample at 750-MHz 1H frequency. We also present a four-dimensional (4D) correlation spectrum, which confirms assignments in some highly congested regions of the 3D spectra. Overall, our results show the potential to assign larger membrane proteins using 3D and 4D correlation experiments and form the basis of further structural and dynamical studies of DsbB by MAS NMR. [source] A Study on the Formation of Smectite in Silica Scales Precipitated from Geothermal Water: The Effect of MagnesiumRESOURCE GEOLOGY, Issue 3 2005Yoshinobu Aramaki Abstract. Silica scales containing large amounts of smectite were recently found in the pipelines for geothermal water at a geothermal power plant. To elucidate the mechanism of smectite formation, seven silica scale samples were characterized by powder X-ray diffraction, chemical analysis and 27A1 MAS NMR. Smectite was present in samples with MgO levels above 10 wt% and Al2O3 levels below 10 wt%. In 27A1 MAS NMR spectra, peaks assigned to both tetrahedrally and octahedrally coordinated aluminum (Al(4) and Al(6)) were observed for Mg-rich samples, whereas a peak due to Al(4) alone appeared in Mg-poor samples. From these observation and comparison between 27A1 MAS NMR spectra for synthesized precipitates of Al2O3 -SiO2 containing MgO and not containing MgO, it is concluded that magnesium plays an important role in the stabilization of Al(6), and results in the formation of smectite [source] Bioencapsulation of apomyoglobin in nanoporous organosilica sol,gel glasses: Influence of the siloxane network on the conformation and stability of a model proteinBIOPOLYMERS, Issue 11 2009Bouzid Menaa Abstract Nanoporous sol,gel glasses were used as host materials for the encapsulation of apomyoglobin, a model protein employed to probe in a rational manner the important factors that influence the protein conformation and stability in silica-based materials. The transparent glasses were prepared from tetramethoxysilane (TMOS) and modified with a series of mono-, di- and tri-substituted alkoxysilanes, RnSi(OCH3)4,n (R = methyl-, n = 1; 2; 3) of different molar content (5, 10, 15%) to obtain the decrease of the siloxane linkage (SiOSi). The conformation and thermal stability of apomyoglobin characterized by circular dichroism spectroscopy (CD) was related to the structure of the silica host matrix characterized by 29Si MAS NMR and N2 adsorption. We observed that the protein transits from an unfolded state in unmodified glass (TMOS) to a native-like helical state in the organically modified glasses, but also that the secondary structure of the protein was enhanced by the decrease of the siloxane network with the methyl modification (n = 0 < n = 1 < n = 2 < n = 3; 0 < 5 < 10 < 15 mol %). In 15% trimethyl-modified glass, the protein even reached a maximum molar helicity (,24,000 deg. cm2 mol,1) comparable to the stable folded heme-bound holoprotein in solution. The protein conformation and stability induced by the change of its microlocal environment (surface hydration, crowding effects, microstructure of the host matrix) were discussed owing to this trend dependency. These results can have an important impact for the design of new efficient biomaterials (sensors or implanted devices) in which properly folded protein is necessary. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 895,906, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Synthesis, X-Ray Structural Analysis and Spectroscopic Investigations (IR and 31P MAS NMR) of Mixed Barium/Strontium Fluoroapatites.CHEMINFORM, Issue 49 2004Abdallah Aissa Abstract For Abstract see ChemInform Abstract in Full Text. [source] Acid,Base Bifunctional Catalytic Surfaces for Nucleophilic Addition ReactionsCHEMISTRY - AN ASIAN JOURNAL, Issue 8-9 2008Ken Motokura Dr. Abstract This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid,base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid,acid surfaces afforded highly active acid,base bifunctional catalysts, which enabled various organic transformations including CC coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms. [source] |