mA Cm (ma + cm)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science


Selected Abstracts


RE (RE = Sm, Eu, Gd)-doped CeO2 single buffer layers for coated conductors prepared by chemical solution deposition

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 7 2009
Ruiping Sun
Abstract Textured RE (RE = Sm, Eu, Gd)-doped CeO2 single buffer layers for coated conductors were prepared by a polymer assisted chemical solution deposition (PACSD) approach. The as-grown buffer layers on biaxially textured NiW(5%) alloy tapes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) as well as atomic force microscopy (AFM). The thicknesses of these buffer layers have been determined to be over 150 nm, on which a YBCO film has been deposited with an onset transition temperature above 90 K and a critical current density of 1 MA cm,2. These results indicate that RE doping can increase the critical thickness of CeO2 and PACSD may be a cost-effective way to deposit CeO2. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Stable, Glassy, and Versatile Binaphthalene Derivatives Capable of Efficient Hole Transport, Hosting, and Deep-Blue Light Emission

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2010
Bin Wei
Abstract Organic light-emitting diodes (OLEDs) have great potential applications in display and solid-state lighting. Stability, cost, and blue emission are key issues governing the future of OLEDs. The synthesis and photoelectronics of a series of three kinds of binaphthyl (BN) derivatives are reported. BN1,3 are "melting-point-less" and highly stable materials, forming very good, amorphous, glass-like films. They decompose at temperatures as high as 485,545,°C. At a constant current density of 25,mA,cm,2, an ITO/BN3/Al single-layer device has a much-longer lifetime (>80,h) than that of an ITO/NPB/Al single-layer device (8,h). Also, the lifetime of a multilayer device based on BN1 is longer than a similar device based on NPB. BNs are efficient and versatile OLED materials: they can be used as a hole-transport layer (HTL), a host, and a deep-blue-light-emitting material. This versatility may cut the cost of large-scale material manufacture. More importantly, the deep-blue electroluminescence (emission peak at 444 nm with CIE coordinates (0.16, 0.11), 3.23 cd A,1 at 0.21,mA cm,2, and 25200,cd,m,2 at 9,V) remains very stable at very high current densities up to 1000,mA,cm,2. [source]


Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting

ADVANCED FUNCTIONAL MATERIALS, Issue 7 2010
Florian Le Formal
Abstract A promising route to increase the performance of hematite (,-Fe2O3) photoelectrodes for solar hydrogen production through water-splitting is to use an extremely thin layer of this visible light absorber on a nanostructured scaffold. However, the typically poor performance of ultrathin (ca. 20,nm) films of hematite has been the limiting factor in implementing this approach. Here, the surprising effect of a substrate pretreatment using tetraethoxysilicate (TEOS) is reported; it results in drastic improvements in the photoperformance of 12.5,nm thick films of hematite. These films exhibit a water oxidation photocurrent onset potential at 1.1,V versus the reversible hydrogen electrode (vs. RHE) and a plateau current of 0.63,mA cm,2 at 1.5,V vs. RHE under standard illumination conditions, representing the highest reported performance for ultrathin hematite films. In contrast, almost no photoactivity is observed for the photoanode with the same amount of hematite on an untreated substrate. A detailed study of the effects of the TEOS treatment shows that a monolayer of SiOx is formed, which acts to change the hematite nucleation and growth mechanism, increases its crystallinity, reduces the concentration of carrier trapping states of the ultrathin films, and suggests its further application to quantum-dot and extremely-thin-absorber (ETA)-type solar cells. [source]


High Efficiency Blue Organic LEDs Achieved By an Integrated Fluorescence,Interlayer,Phosphorescence Emission Architecture

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
Tianhang Zheng
Abstract This paper presents a new strategy to develop efficient organic light-emitting devices (OLEDs) by doping fluorescent- and phosphorescent-type emitters individually into two different hosts separated by an interlayer to form a fluorescence,interlayer,phosphorescence (FIP) emission architecture. One blue OLED with FIP emission structure comprising p -bis(p - N,N -diphenylaminostyryl)benzene (DSA-Ph) and bis[(4,6-di-fluorophenyl)-pyridinate- N,C2']picolinate (FIrpic) exhibiting a peak luminance efficiency of 15.8,cd A,1 at 1.54,mA cm,2 and a power efficiency of 10.2,lm W,1 at 0.1,mA cm,2 is successfully demonstrated. The results are higher than those of typical phosphorescent OLEDs with a single emission layer by 34% and 28%, respectively. From experimental and theoretical investigations on device performance, and the functions of the used emitters and interlayer, such enhancement should ascribe to the appropriate utilization of the two types of emitters. The fluorescent emitter of DSA-Ph is used to facilitate the carrier transport, and thus accelerate the generation of excitons, while the phosphorescent emitter of FIrpic could convert the generated excitons into light efficiently. The method proposed here can be applied for developing other types of red, green, and white OLEDs. [source]


Red-Emitting Polyfluorenes Grafted with Quinoline-Based Iridium Complex: "Simple Polymeric Chain, Unexpected High Efficiency"

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2010
Zhihua Ma
Abstract A series of red-light emitting electrophosphorescent polyfluorenes (PFs) with varying content of a quinoline-based iridium complex, (PPQ)2Ir(acac) (bis(2,4-diphenylquinolyl-N,C2,) iridium(acetylacetonate)), in the side chain are synthesized by Suzuki polycondensation. Because of the efficient Förster energy transfer from the PF main chain to (PPQ)2Ir(acac) and direct charge trapping on the complex, the electroluminescent emission from PF is nearly completely quenched, even though the amount of iridium complex incorporated into the polymers is as low as 1,mol %. Based on a single-layer device configuration, a luminous efficiency of up to 5.0,cd A,1 with a luminance of 2000,cd m,2 and Commission Internationale de L'Eclairage coordinates of (0.63, 0.35) (x, y) is realized, which is far superior to that of previously reported red-light emitting PFs containing benzothiazole- and isoquinoline-based iridium complexes. This result is beyond expectations, especially when considering that the simple polymeric chain involved has no additional charge-transporting moieties. Noticeably, the device efficiency remains as high as 4.2,cd A,1 with a luminance of 4000,cd m,2 even at current densities of 100,mA cm,2. Further optimization of the device configuration by incorporating an additional electron-injection layer leads to improved efficiencies of 8.3 and 7.5,cd A,1 at luminances of 100 and 1000,cd m,2, respectively. This state-of-the-art performance indicates that covalently attaching quinoline-based iridium complexes to a PF backbone is a simple and effective strategy to develop high-efficiency red-light emitting electrophosphorescent polymers. [source]


Copolymers of Cyclopentadithiophene and Electron-Deficient Aromatic Units Designed for Photovoltaic Applications

ADVANCED FUNCTIONAL MATERIALS, Issue 20 2009
Johan C. Bijleveld
Abstract Alternating copolymers based on cyclopentadithiophene (CPDT) and five different electron-deficient aromatic units with reduced optical band gaps are synthesized via Suzuki coupling. All polymers show a significant photovoltaic response when mixed with a fullerene acceptor. The frontier orbital levels of the new polymers are designed to minimize energy losses by increasing the open-circuit voltage with respect to the optical band gap, while maintaining a high coverage of the absorption with the solar spectrum. The best cells are obtained for a copolymer of CPDT and benzooxadiazole (BO) with a band gap of 1.47,eV. This cell gives a short-circuit current of 5.4,mA cm,2, an open-circuit voltage of 0.78,V, and a fill factor of 0.6, resulting in a power conversion efficiency of about 2.5%. [source]


Effect of Alkyl Side-Chain Length on Photovoltaic Properties of Poly(3-alkylthiophene)/PCBM Bulk Heterojunctions

ADVANCED FUNCTIONAL MATERIALS, Issue 20 2009
Abay Gadisa
Abstract The morphological, bipolar charge-carrier transport, and photovoltaic characteristics of poly(3-alkylthiophene) (P3AT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blends are studied as a function of alkyl side-chain length m, where m equals the number of alkyl carbon atoms. The P3ATs studied are poly(3-butylthiophene) (P3BT, m,=,4), poly(3-pentylthiophene) (P3PT, m,=,5), and poly(3-hexylthiophene) (P3HT, m,=,6). Solar cells with these blends deliver similar order of photo-current yield (exceeding 10,mA cm,2) irrespective of side-chain length. Power conversion efficiencies of 3.2, 4.3, and 4.6% are within reach using solar cells with active layers of P3BT:PCBM (1:0.8), P3PT:PCBM (1:1), and P3HT:PCBM (1:1), respectively. A difference in fill factor values is found to be the main source of efficiency difference. Morphological studies reveal an increase in the degree of phase separation with increasing alkyl chain length. Moreover, while P3PT:PCBM and P3HT:PCBM films have similar hole mobility, measured by hole-only diodes, the hole mobility in P3BT:PCBM lowers by nearly a factor of four. Bipolar measurements made by field-effect transistor showed a decrease in the hole mobility and an increase in the electron mobility with increasing alkyl chain length. Balanced charge transport is only achieved in the P3HT:PCBM blend. This, together with better processing properties, explains the superior properties of P3HT as a solar cell material. P3PT is proved to be a potentially competitive material. The optoelectronic and charge transport properties observed in the different P3AT:PCBM bulk heterojunction (BHJ) blends provide useful information for understanding the physics of BHJ films and the working principles of the corresponding solar cells. [source]


Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Field-Emission

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
Haibo Zeng
Abstract Here, a facile and effective route toward full control of vertical ZnO nanorod (NR)/nanowire (NW) arrays in centimeter-scale areas and considerable improvement of field-emission (FE) performance is reported. Controlled deformation of colloidal crystal monolayer templates is introduced by heating near glass-transition temperature. The NR/NW density, uniformity, and tapering were all adjusted through selection of template size and deformation, and electrolyte composition. In line with the adjustments, the field-emission performance of the arrays is significantly improved. A low turn-on electric field of 1.8,V µm,1, a field-enhancement factor of up to 5,750, and an emitting current density of up to 2.5,mA cm,2 were obtained. These improved parameters would benefit their potential application in cold-cathode-based electronics. [source]


Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT

ADVANCED FUNCTIONAL MATERIALS, Issue 6 2009
Qian Liu
Abstract A soluble graphene, which has a one-atom thickness and a two-dimensional structure, is blended with poly(3-hexylthiophene) (P3HT) and used as the active layer in bulk heterojunction (BHJ) polymer photovoltaic cells. Adding graphene to the P3HT induces a great quenching of the photoluminescence of the P3HT, indicating a strong electron/energy transfer from the P3HT to the graphene. In the photovoltaic devices with an ITO/PEDOT:PSS/P3HT:graphene/LiF/Al structure, the device efficiency increases first and then decreases with the increase in the graphene content. The device containing only 10,wt % of graphene shows the best performance with a power conversion efficiency of 1.1%, an open-circuit voltage of 0.72,V, a short-circuit current density of 4.0,mA cm,2, and a fill factor of 0.38 under simulated AM1.5G conditions at 100,mW cm,2 after an annealing treatment at 160,°C for 10,min. The annealing treatment at the appropriate temperature (160,°C, for example) greatly improves the device performance; however, an annealing at overgenerous conditions such as at 210,°C results in a decrease in the device efficiency (0.57%). The morphology investigation shows that better performance can be obtained with a moderate content of graphene, which keeps good dispersion and interconnection. The functionalized graphene, which is cheap, easily prepared, stable, and inert against the ambient conditions, is expected to be a competitive candidate for the acceptor material in organic photovoltaic applications. [source]


Fabrication of Large-Scale Single-Crystalline PrB6 Nanorods and Their Temperature-Dependent Electron Field Emission

ADVANCED FUNCTIONAL MATERIALS, Issue 5 2009
Qin Yuan Zhang
Abstract A simple catalysis-free approach that utilises a gas,solid reaction for the synthesis of large-scale single-crystalline PrB6 nanorods using Pr and BCl3 as starting materials is demonstrated. The nanorods exhibit a low turn-on electric field (2.80,V µ-b;m,1 at 10,µ-b;A cm,2), a low threshold electric field (6.99,V µ-b;m,1 at 1,mA cm,2), and a high current density (1.2,mA cm,2 at 7.35,V µ-b;m,1) at room temperature (RT). The turn-on and threshold electric field are found to decrease clearly from 2.80 to 0.95 and 6.99 to 3.55,V µ-b;m,1, respectively, while the emission current density increases significantly from 1.2 to 13.8,mA cm,2 (at 7.35,V µ-b;m,1) with an increase in the ambient temperature from RT to 623,K. The field enhancement factor, emission current density, and the dependence of the effective work function with temperature are investigated. The possible mechanism of the temperature-dependent emission from PrB6 nanorods is discussed. [source]


Exploiting a Dual-Fluorescence Process in Fluorene,Dibenzothiophene- S,S -dioxideCo-Polymers to Give Efficient Single Polymer LEDs with Broadened Emission

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2009
Simon M. King
Abstract A description of the synthesis of random (9,9-dioctylfluorene-2,7-diyl),(dibenzothiophene- S,S -dioxide-3,7-diyl) co-polymers (p(F-S)x) by palladium-catalyzed Suzuki cross-coupling polymerization where the feed ratio of the latter is varied from 2 to 30,mol % (i.e., x,=,2,30) is given. Polymer light emitting devices are fabricated with the configuration indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)/p(F,S)x/Ba/Al. The device external quantum efficiency increased as the ratio of the S co-monomer was increased, up to a maximum of 1.3% at 100,mA cm,2 for p(F-S)30 and a brightness of 3 770,cd m,2 (at 10,V). The S units impart improved electron injection, more balanced mobilities, and markedly improved device performance compared to poly(9,9-dioctylfluorene) under similar conditions. These co-polymers display broad emission, observed as greenish-white light, which arises from dual fluorescence, viz. both local excited states and charge transfer states. Utilizing dual emission can reduce problems associated with Förster energy transfer from high-energy to-low energy excited states. [source]


Highly Efficient Red Phosphorescent OLEDs based on Non-Conjugated Silicon-Cored Spirobifluorene Derivative Doped with Ir-Complexes

ADVANCED FUNCTIONAL MATERIALS, Issue 3 2009
Yi-Yeol Lyu
Abstract A novel host material containing silicon-cored spirobifluorene derivative (SBP-TS-PSB), is designed, synthesized, and characterized for red phosphorescent organic light-emitting diodes (OLEDs). The SBP-TS-PSB has excellent thermal and morphological stabilities and exhibits high electroluminescence (EL) efficiency as a host for the red phosphorescent OLEDs. The electrophosphorescence properties of the devices using SBP-TS-PSB as the host and red phosphorescent iridium (III) complexes as the emitter are investigated and these devices exhibit higher EL performances compared with the reference devices with 4,4,- N,N,-dicarbazole-biphenyl (CBP) as a host material; for example, a (piq)2Ir(acac)-doped SBP-TS-PSB device shows maximum external quantum efficiency of ,ext,=,14.6%, power efficiency of 10.3 lm W,1 and Commission International de L'Eclairage color coordinates (0.68, 0.32) at J,=,1.5,mA cm,2, while the device with the CBP host shows maximum ,ext,=,12.1%. These high performances can be mainly explained by efficient triplet energy transfer from the host to the guests and improved charge balance attributable to the bipolar characteristics of the spirobifluorene group. [source]


Field Emission and Cathodoluminescence of ZnS Hexagonal Pyramids of Zinc Blende Structured Single Crystals

ADVANCED FUNCTIONAL MATERIALS, Issue 3 2009
Zhi-Gang Chen
Abstract Single-crystal hexagonal pyramids of zinc blende ZnS are fabricated by facile thermal evaporation in an ammonia atmosphere at 1150,°C. It is found that ZnS pyramids grow along the [111] crystal axis and possess a sharp tip with a diameter of ,10,nm and a micrometer-sized base. The structural model and growth mechanism are proposed based on crystallographic characteristics. This unique ZnS pyramid structure exhibits a low turn-on field (2.81,V µm,1), a high field-enhancement factor (over 3000), a large field-emission current density (20,mA cm,2), and good stability with very small fluctuation (0.9%). These superior field-emission properties are clearly attributed to the pyramid morphology, with micrometer-sized bases and nanotips, and high crystallinity. Moreover, a stable UV emission of 337,nm at room temperature is observed and can be ascribed to the band emission of the zinc blende phase. These results suggest that the ZnS hexagonal pyramids can be expected to find promising applications as field emitters and optoelectronic devices. [source]


Rational Design of Chelating Phosphine Functionalized Os(II) Emitters and Fabrication of Orange Polymer Light-Emitting Diodes Using Solution Process,

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2008
M. Cheng
Abstract A new series of charge neutral Os(II) pyridyl azolate complexes with either bis(diphenylphosphino)methane (dppm) or cis -1,2-bis(diphenylphosphino)ethene (dppee) chelates were synthesized, and their structural, electrochemical, photophysical properties and thermodynamic relationship were established. For the dppm derivatives 3a and 4a, the pyridyl azolate chromophores adopt an eclipse orientation with both azolate segments aligned trans to each other, and with the pyridyl groups resided the sites that are opposite to the phosphorus atoms. In sharp contrast, the reactions with dppee ligand gave rise to the formation of two structural isomers for all three kind of azole chromophores, with both azolate or neutral heterocycles (i.e., pyridyl or isoquinolinyl fragments) located at the mutual trans -disposition around the Os metal (denoted as series of a and b complexes). These chelating phosphines Os(II) complexes show remarkably high thermal stability, among which and several exhibit nearly unitary phosphorescence yield in deaerated solution at RT. A polymer light-emitting device (PLED) prepared using 0.4 mol % of 5a as dopant in a blend of poly(vinylcarbazole) (PVK) and 30 wt % of 2- tert -butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) exhibits yellow emission with brightness of 7208 cd m,2, an external quantum efficiency of 10.4 % and luminous efficiency of 36.1 cd A,1 at current density of 20 mA cm,2. Upon changing to 1.6 mol % of 6a, the result showed even better brightness of 9212 cd m,2, external quantum efficiency of 12.5 % and luminous efficiency of 46.1 cd A,1 at 20 mA cm,2, while the max. external quantum efficiency of both devices reaches as high as 11.7 % and 13.3 %, respectively. The high PL quantum efficiency, non-ionic nature, and short radiative lifetime are believed to be the determining factors for this unprecedented achievement. [source]


High-Efficiency Polymer Tandem Solar Cells with Three-Terminal Structure

ADVANCED MATERIALS, Issue 8 2010
Srinivas Sista
Tandem solar cells have the advantage of enhancing the absorption range of polymer solar cells. A three-terminal tandem cell based on two polymer bulk heterojunctions that have complementary absorption profile is demonstrated. In this device configuration the two subcells are connected in parallel through a common semitransparent metal interlayer and an efficiency of 4.8% with short circuit current of 15.1,mA cm,2 is achieved. [source]


Study of the production of hydrogen bubbles at low current densities for electroflotation processes

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2010
Carlos Jiménez
Abstract BACKGROUND: Flotation processes are widely used in waste-water treatment and it is quite important to have a tool to determine and optimize the size distribution of the bubbles produced. In this work, the electrochemical production of bubbles to enhance the performance of electrocoagulation processes by flotation is studied. To do this, a current density range characteristic of electrocoagulation processes is used to produce microbubbles (<5 mA cm,2), instead of the higher values used in other studies to characterize electroflotation in non-combined processes. RESULTS: Current density and pH were found to influence the process significantly. In the range used, higher current densities allow a larger number of small size bubbles to be obtained, appropriate for use in electroflotation processes. However, at the boundaries of the range, the size of the bubbles was increased advising against use. Neutral pH values also favour the formation of small bubbles, and the presence of possible competing reactions have to be considered because they diminish the gas flow and affect the number of bubbles and their size. The roughness of the surface of the electrode material also has an important influence. CONCLUSIONS: The image acquisition and analysis system developed allows measurement of the size distribution of hydrogen bubbles in the range of current densities studied. Current density and pH seem to be the main parameters affecting the mean diameter of bubbles and the amount of gas produced, and the electrode material may also influence hydrogen production significantly. Copyright © 2010 Society of Chemical Industry [source]


Separation of strontium and cadmium ions from nitrate medium by ion-exchange membrane in an electrodialysis system

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 1 2004
MS Gasser
Abstract The separation of strontium and cadmium ions in a system containing ethylenediaminetetraacetic acid (EDTA) as a complexing agent has been studied using a three-compartment electrolytic cell. The results suggest that under the influence of an electric field, Sr ions were exclusively transported to the cathode as positively charged uncomplexed cations while cadmium ions removed from the middle compartment of the electrolytic cell migrated to the anode as negatively charged complexes. The effect of the EDTA complexing agent on the separation was studied within the pH range 2,4 at 100 mA (12.4 mA cm,2). Copyright © 2003 Society of Chemical Industry [source]


Synthesis and properties of phenothiazylene vinylene-based polymers: New organic semiconductors for field-effect transistors and solar cells

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2010
Seon-Kyoung Son
Abstract A series of new phenothiazylene vinylene-based semiconducting polymers, poly[3,7-(4,-dodecyloxyphenyl)phenothiazylene vinylene] (P1), poly[3,7-(4,-dodecyloxyphenyl)phenothiazylene vinylene- alt -1,4-phenylene vinylene] (P2), and poly[3,7-(4,-dodecyloxyphenyl)phenothiazylene vinylene- alt -2,5-thienylene vinylene] (P3), have been synthesized via a Horner-Emmons reaction. FTIR and 1H NMR spectroscopies confirmed that the configurations of the vinylene groups in the polymers were all - trans (E). The weight-averaged molecular weights (Mw) of P1, P2, and P3 were found to be 27,000, 22,000, and 29,000, with polydispersity indices of 1.91, 2.05, and 2.25, respectively. The thermograms for P1, P2, and P3 each contained only a broad glass transition, at 129, 167, and 155 °C, respectively, without the observation of melting features. UV,visible absorption spectra of the polymers showed two strong absorption bands in the ranges 315,370 nm and 450,500 nm, which arose from absorptions of the phenothiazine segments and the conjugated main chains. Solution-processed field-effect transistors fabricated from these polymers showed p -type organic thin-film transistor characteristics. The field-effect mobilities of P1, P2, and P3 were measured to be 1.0 × 10,4, 3.6 × 10,5, and 1.0 × 10,3 cm2 V,1 s,1, respectively, and the on/off ratios were in the order of 102 for P1 and P2, and 103 for P3. Atomic force microscopy and X-ray diffraction analysis of thin films of the polymers show that they have amorphous structures. A photovoltaic device in which a P3/PC71BM (1/5) blend film was used as the active layer exhibited an open-circuit voltage (VOC) of 0.42 V, a short circuit current (JSC) of 5.17 mA cm,2, a fill factor of 0.35, and a power conversion efficiency of 0.76% under AM 1.5 G (100 mW cm,2) illumination. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 635,646, 2010 [source]


Preparation and characterization of pulse electrodeposited GaAs films

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 5 2006
K. R. Murali
Abstract GaAs is a III,V compound possessing high mobility and a direct band gap of 1.43 eV, making it a very suitable candidate for photovoltaic applications. Thin GaAs films were prepared by plating an aqueous solution containing GaCl3 and As2O3 at a pH of 2 and at room temperature. The current density was kept at 50 mA cm,2 and the duty cycle was varied in the range 10,50%. The films were deposited on titanium, nickel and tin oxide coated glass substrates. Films exhibited polycrystalline nature with peaks corresponding to single-phase GaAs. Optical absorption measurements indicated a direct band gap of 1.40 eV. Atomic force microscope measurements indicated uniform coverage with large crystallites for the films deposited at higher duty cycles. Photoelectrochemical cells were made using the films as photoelectrodes and graphite as counter electrode in 1 M polysulphide electrolyte. At 60 mW cm,2 illumination, an open-circuit voltage of 0.5 V and a short-circuit current density of 5.0 mA cm,2 were observed for the films deposited at a duty cycle of 50%. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Preparation of highly H+ permeable sulfonated poly(ether ether ketone) cation exchange membranes and their applications in electro-generation of thioglycolic acid

POLYMER INTERNATIONAL, Issue 7 2009
Xuehong Huang
Abstract BACKGROUND: Sulfonated poly(ether ether ketone) (SPEEK) was successfully synthesized from sulfonated 4,4,-difluorobenzophenone, 4,4,-difluorobenzophenone and bisphenol A. SPEEK cation exchange membranes were prepared by the casting method. The composition and morphology of SPEEK were characterized using Fourier transform infrared and 1H NMR spectroscopies, respectively. The ion exchange capacity (IEC), water uptake and degree of swelling of the membranes were also investigated. SPEEK120 was used as a separator in an electrolysis cell to produce thioglycolic acid (TGA). RESULTS: SPEEK polymerization was carried out at 145 and 175 °C for 10 h. The IEC of the SPEEK membranes was measured as 0.24,2.02 meq g,1 and the water uptake as 2.26,26.45%. The degree of swelling of the membranes was 1.71,15.28%. TGA was effectively prepared by electro-reduction of dithioglycolic acid. The current efficiency peaked at 58.31% at room temperature with a current density of 15 mA cm,2. CONCLUSION: SPEEK120 membrane shows good dimensional stability and H+ permeability. Compared to the traditional metal-reduction method, the current electro-reduction technique avoids the use of zinc powder and so reduces environmental pollution. Copyright © 2009 Society of Chemical Industry [source]


In situ hypochlorous acid generation for the treatment of brackish shrimp aquaculture wastewater

AQUACULTURE RESEARCH, Issue 5 2008
Krishnan Vijayaraghavan
Abstract This study presents an unconventional framework for treating shrimp aquaculture wastewater based on in situ hypochlorous acid (HOCl) oxidation. The in situ oxidation process makes use of the salinity present in aquaculture wastewater to generate HOCl. The undivided electrolytic cell consisted of two sets of graphite as the anode and stainless sheets as the cathode. The electrochemical oxidation of shrimp aquaculture wastewater was carried out for an influent COD concentration of 1730 mg L,1 at current densities of 37.2 and 74.5 mA cm,2. The results showed that in order to achieve a residual COD concentration of 50±5 mg L,1 at current densities of 37.2 and 74.5 mA cm,2, electrolysis periods of 60 and 30 min are required respectively. Hence, for the above-mentioned current densities, the corresponding energy requirements were found to be 19.4 and 13.3 W h L,1. The cost incurred in treating 1 m3 of shrimp aquaculture wastewater was found to be RM 4 and 3 when the electrolytic reactor was operated at a current density of 37.2 and 74.5 mA cm,2 with a salinity of 23,. The foregoing study highlights the potential of in situ HOCl oxidation in treating brackish shrimp aquaculture wastewater. [source]


Influence of a pore-former and PTFE in the performance of the direct ethanol fuel cell

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2009
S. K. Biswas
Abstract The direct ethanol fuel cell (DEFC) is a promising fuel cell device, which could provide power to portable and microelectronic equipment in the future. In the present investigation, the influence of a pore-former, polytetrafluoroethylene (PTFE) and catalyst loadings in the electrocatalyst of the anode on DEFC performance is studied. The decal transfer method is used to prepare the membrane electrode assembly (MEA) using PtRu/C (40:20% by wt) as the anode catalyst, and Pt/C (40% by wt) as the cathode catalyst, a pore-former, PTFE dispersion and Nafion ionomer. The pore-former used is 10% (by wt) NaHCO3 in the catalyst ink during the preparation of MEA. The voltage-current characteristics of DEFC were monitored at different loadings of the catalyst, PTFE and a pore-former in MEA. The DEFC performance improved with the use of a pore-former and higher loading of PTFE in MEA. Higher DEFC performance is obtained because PTFE, along with the network of pores in the anode side allowed easy removal of reaction species, thereby rendering the catalyst site available for ethanol oxidation. Further, the use of a pore-former and PTFE at the anode allowed higher loading of electrocatalyst resulting in an increase in the performance of DEFC. The DEFC, with 1 mg cm,2 of catalyst loading at the anode and cathode, 10% (by wt) NaHCO3 of a pore-former, 20% (by wt) PTFE loading in catalyst ink gives maximum power density of 8.5 mW cm,2 at a current density of 31.3 mA cm,2. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source]