Distribution by Scientific Domains

Selected Abstracts

Soil detachment and transport on field- and laboratory-scale interrill areas: erosion processes and the size-selectivity of eroded sediment

O. Malam Issa
Abstract Field- and laboratory-scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi-arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h,1 with a duration of 1 to 2 hours. Time-series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size-selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport-limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size-selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd. [source]

A mid-shelf, mean wave direction climatology for southeastern Australia, and its relationship to the El Niño,Southern Oscillation since 1878 A.D.

Ian D. Goodwin
Abstract Coastal systems behave on timescales from days to centuries. Shelf and coastal wave climatological data from the Tasman Sea are only available for the past few decades. Hence, the records are too short to investigate inter- and multidecadal variability and their impact on coastal systems. A method is presented to hindcast monthly mid-shelf mean wave direction (MWD) for southeastern Australia, based on the monthly, trans-Tasman mean sea-level pressure (MSLP) difference between northern NSW (Yamba) and the north island of New Zealand (Auckland). The MSLP index is calibrated to instrumental (Waverider buoy) MWD data for the Sydney shelf and coast. Positive/negative trans-Tasman MSLP difference is significantly correlated to southerly/easterly Sydney MWD, and to long/short mean wave periods. The 124-year Sydney annual (MWD) time series displays multidecadal variability, and identifies a significant period of more southerly annual MWD during 1884 to 1914 than in the period since 1915. The Sydney MWD is significantly correlated to the Southern Oscillation Index (SOI). The correlation with the SOI is enhanced during periods when the Interdecadal Pacific Oscillation (IPO) is in its negative state and warm SST anomalies occur in the southwest Pacific region. The Sydney MWD was found to be associated with Pacific basin-wide climate fluctuations associated with the El Niño-Southern Oscillation (ENSO). Southerly/easterly Sydney MWD is correlated with low/high MSLP anomalies over New Zealand and the central Pacific Ocean. Southerly/easterly Sydney MWD is also correlated with cool/warm SST anomalies in the southwest Pacific, particularly in the eastern Coral Sea and Tasman Sea. Copyright © 2005 Royal Meteorological Society. [source]

Hybrid titanium catalyst supported on core-shell silica/poly(styrene- co -acrylic acid) carrier

Lijun Du
Abstract Hybrid titanium catalysts supported on silica/poly(styrene- co -acrylic acid) (SiO2/PSA) core-shell carrier were prepared and studied. The resulting catalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, laser scattering particle analyzer and scanning electronic microscope (SEM). The hybrid catalyst (TiCl3/MgCl2/THF/SiO2·TiCl4/MgCl2/PSA) showed core-shell structure and the thickness of the PSA layer in the two different hybrid catalysts was 2.0 ,m and 5.0 ,m, respectively. The activities of the hybrid catalysts were comparable to the conventional titanium-based Ziegler-Natta catalyst (TiCl3/MgCl2/THF/SiO2). The hybrid catalysts showed lower initial polymerization rate and longer polymerization life time compared with TiCl3/MgCl2/THF/SiO2. The activities of the hybrid catalysts were enhanced firstly and then decreased with increasing P/P. Higher molecular weight and broader molecular weight distribution (MWD) of polyethylene produced by the core-shell hybrid catalysts were obtained. Particularly, the hybrid catalyst with a PSA layer of 5.0 ,m obtained the longest polymerization life time with the highest activity (2071 kg PE mol,1 Ti h,1) and the resulting polyethylene had the broadest MWD (polydispersity index = 11.5) under our experimental conditions. The morphology of the polyethylene particles produced by the hybrid catalysts was spherical, but with irregular subparticles due to the influence of PSA layer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Synthesis and characterization of low relative molecular weight trans -1,4-poly(isoprene)

Huafeng Shao
Abstract Low relative molecular weight trans-1,4-polyisoprene oligomers were synthesized successfully by bulk precipitation and solution polymerization with supported titanium catalyst using hydrogen as relative molecular weight modifier. The effects of polymerization conditions on intrinsic viscosity ([,]), catalyst efficiency (CE) and structure of polymer were studied. Increasing the hydrogen pressure resulted in the decrease of [,] of the polymer. With the increasing of hydrogen pressure and reaction temperature, CE decreased but still maintained above 2500 g polymer/g Ti. The percentage composition of (trans-1, 4-unit) in the polymer was over 90% in all results. The crystallinity of polymer was about 50,60% with Tm being about 60°C. The relative molecular weight distribution index (MWD) was quite difference according to the polymerization method. While number average molecular weight (Mn) exceeded 860, polymer turned from viscous materials to fragile wax materials, and then to toughness materials at 1800. Dynamic property testing showed that the additional of this oligomer could increase the wet-skid resistance of the rubber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]

On the determination of molecular weight distributions of asphaltenes and their aggregates in laser desorption ionization experiments

Ana R. Hortal
Abstract Molecular weight distributions (MWD) of asphaltenes and their aggregates have been investigated in laser desorption ionization (LDI) mass spectrometric experiments. A systematic investigation of the dependence of the measured MWD on the asphaltene sample density and on the laser pulse energy allows the assignment of most probable molecular weights within 300,500 amu and average molecular weights of 800,1000 amu for the monomeric asphaltenes, as well as for the estimation of the contribution from asphaltene clusters in typical LDI measurements. The results serve to reconcile the existing controversy between earlier mass spectrometric characterizations of asphaltenes based on laser desorption techniques by different groups. Furthermore, the MWD measurements performed on particularly dense samples yield an additional differentiated broad band peaking around 9000,10 000 amu and extending over 20 000 amu, not observed previously in LDI experiments, thereby revealing a strong propensity of the asphaltenes to form clusters with specific aggregation numbers, which is in qualitative agreement with previous theoretical predictions and with the interpretation of measurements performed with other techniques. Copyright © 2006 John Wiley & Sons, Ltd. [source]

New strategies for polymer development in pharmaceutical science , a short review

A. Godwin
We are developing synthetic polymers for pharmaceutical and medical applications. These applications can be broadly grouped on how the polymer will be utilized e.g. material, excipient or molecule. Our focus is to develop polymers with more defined structures that are based on biological, physicochemical and/or materials criteria. Strategies are being developed to more efficiently optimize structure,property correlations during preclinical development. We describe two examples of our research on pharmaceutical polymer development: narrow molecular weight distribution (MWD) homopolymeric precursors which can be functionalized to give families of narrow MWD homo- and co-polymers, and hydrolytically degradable polymers. [source]

Effect of water and nitrogen management on aggregate size and carbon enrichment of soil in rice-wheat cropping system,

Rojalin Tripathy
Abstract A study was carried out on a silty clay loam soil (Typic Haplustept) to evaluate the effect of farmyard manure (FYM) vis-à-vis fertilizer and irrigation application on the soil organic C content and soil structure. The fertilizer treatments comprised of eight different combinations of N and FYM and three water regimes. The results indicated that the application of FYM and increasing N rate increased soil organic carbon (SOC) content. Addition of FYM also increased the percentage of large sized water stable aggregates (> 5,mm) and reduced the percentage of smaller size aggregates. This was reflected in an increase in the mean weight diameter (MWD) and improved soil structure. The organic carbon content in macroaggregates (> 1,mm) was greater compared to microaggregates, and it declined with decrease in size of microaggregates. This difference in organic C content between macro- and microaggregates was more with higher N dose and FYM treated plots. The effect of residual FYM on MWD and organic C content of the soil after wheat harvest was not significant. The effect was less in deeper layers compared to surface layers of the soil. MWD was significantly correlated with the SOC content for the top two layers. [source]

Controlled cationic polymerization of cyclopentadiene with B(C6F5)3 as a coinitiator in the presence of water

Sergei V. Kostjuk
Abstract The controlled cationic polymerization of cyclopentadiene (CPD) at 20 °C using 1-(4-methoxyphenyl)ethanol (1)/B(C6F5)3 initiating system in the presence of fairly large amount of water is reported. The number,average molecular weights of the obtained polymers increased in direct proportion to monomer conversion in agreement with calculated values and were inversely proportional to initiator concentration, while the molecular weight distribution slightly broadened during the polymerization (Mw/Mn , 1.15,1.60). 1H NMR analyses confirmed that the polymerization proceeds via reversible activation of the COH bond derived from the initiator to generate the growing cationic species, although some loss of hydroxyl functionality happened in the course of the polymerization. It was also shown that the enchainment in cationic polymerization of CPD was affected by the nature of the solvent(s): for instance, polymers with high regioselectivity ([1,4] up to 70%) were obtained in acetonitrile, whereas lower values (around 60%) were found in CH2Cl2/CH3CN mixtures. Aqueous suspension polymerization of CPD using the same initiating system was successfully performed and allowed to synthesize primarily hydroxyl-terminated oligomers (Fn = 0.8,0.9) with Mn , 1000 g mol,1 and broad MWD (Mw/Mn , 2.2). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4734,4747, 2008 [source]

Synthesis and characterization of poly[styrene- b -methyl(3,3,3-trifluoropropyl)siloxane] diblock copolymers via anionic polymerization

Lingmin Yi
Abstract A series of narrow molecular weight distribution (MWD) polystyrene- b -poly[methyl(3,3,3-trifluoropropyl)siloxane] (PS- b -PMTFPS) diblock copolymers were synthesized by the sequential anionic polymerization of styrene and trans -1,3,5-trimethyl-1,3,5-tris(3,,3,,3,-trifluoropropyl)cyclotrisiloxane in tetrahydrofuran (THF) with n -butyllithium as the initiator. The diblock copolymers had narrow MWDs ranging from 1.06 to 1.20 and number-average molecular weights ranging from 8.2 × 103 to 37.1 × 103. To investigate the properties of the copolymers, diblock copolymers with different weight fractions of poly[methyl(3,3,3-trifluoropropyl)siloxane] (15.4,78.8 wt %) were prepared. The compositions of the diblock copolymers were calculated from the characteristic proton integrals of 1H NMR spectra. For the anionic ring-opening polymerization (ROP) of 1,3,5-trimethyl-1,3,5-tris(3,,3,,3,-trifluoropropyl)cyclotrisiloxane (F3) initiated by polystyryllithium, high monomer concentrations could give high polymer yields and good control of MWDs when THF was used as the polymerization solvent. It was speculated that good control of the block copolymerization under the condition of high monomer concentrations was due to the slowdown of the anionic ROP rate of F3 and the steric hindrance of the polystyrene precursors. There was enough time to terminate the ROP of F3 when the polymer yield was high, and good control of block copolymerization could be achieved thereafter. The thermal properties (differential scanning calorimetry and thermogravimetric analysis) were also investigated for the PS- b -PMTFPS diblock copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4431,4438, 2005 [source]

Design strategies for controlling the molecular weight and rate using reversible addition,fragmentation chain transfer mediated living radical polymerization

Michael J. Monteiro
Abstract Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition,fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a polymer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3189,3204, 2005 [source]

Well-defined glycopolymer amphiphiles for liquid and supercritical carbon dioxide applications

Weijun Ye
Abstract Well-defined D -glucose-containing glycopolymers, poly(3- O -methacryloyl-1,2 : 5,6-di- O -isopropylidene- D -glucofuranose) (PMAIpGlc), and diblock copolymers of PMAIpGlc with poly(1,1-dihydroperfluorooctyl methacrylate) (PFOMA) were synthesized by living anionic polymerization in THF at ,78 °C with 1,1-diphenylhexyllithium in the presence of lithium chloride. The resulting polymers were found to possess predictable molecular weights and very narrow molecular weight distributions (MWD, Mw/Mn , 1.16). Removal of the acetal protective groups from the protected glycopolymer block copolymer was carried out using 90% trifluoroacetic acid at room temperature, yielding a hydrophilic block copolymer with pendant glucose moieties. Both protected (lipophilic/CO2 -philic) and deprotected (hydrophilic/CO2 -philic) fluorocopolymers were proved to be CO2 amphiphiles. Their solubility in CO2 was heavily influenced by the amphiphilic structure, such as the copolymer compositions and the polarities of sugar block. Light-scattering studies showed that, after removal of the protective groups, the deprotected block copolymer formed aggregate structures in liquid CO2 with an average micellar size of 27 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3841,3849, 2001 [source]

Controlled free-radical polymerization of vinyl chloride

Dietrich Braun
Owing to the importance of poly(vinyl chloride) (PVC) as the second-largest plastic in volume after the polyolefins and above styrene polymers, the control of the free-radical polymerization of vinyl chloride (VC) is of high industrial and academic interest. But still the term "controlled" polymerization is not yet clearly defined. Often it is used for quasi-living polymerizations with equilibrium reactions in the initiation and/or termination step or for the control of the molecular weight distribution (MWD), but it can also be applied to several structural aspects such as stereochemistry, branching, or special technical properties. In the present article, the control of chain growth and chain transfer is discussed. It has been well known for many years that the propagation step in the VC polymerization is terminated to a large degree by the rather frequent and temperature-dependent chain transfer of the growing macromolecules to the monomer. Therefore, the degree of polymerization is strongly governed by the polymerization temperature. However, this transfer step does not result in a controlled or a narrow MWD. By means of free-radical nitroxide-mediated polymerization of VC in suspension, PVC with a narrower MWD can be obtained also at higher polymerization temperatures. The resulting PVC with nitroxide end groups can act as a macro-initiator for various monomers, resulting in two-block copolymers, which are, e.g., interesting compatibilizers in blends with PVC. J. VINYL ADDIT. TECHNOL., 11:86,90, 2005. © 2005 Society of Plastics Engineers [source]

Polymerization of Methyl Acrylate by a 2,6-Bis(2-benzimidazyl)pyridine Zirconium Dichloride/MAO Catalyst System

Hyun Yong Cho
Abstract Summary: A novel non-metallocene Zr(IV) complex bearing a bianionic form of the ligand 2,6-bis(2-benzimidazolyl)pyridine is synthesized. This Zr complex is an active catalyst for the polymerization of MA via coordination polymerization in the presence of methylaluminoxane MAO. The activity and MWD are increased as the polymerization temperature increases. The maximum activity is observed at Al/Zr molar ratio of 100 and the deactivation is shown above 100, resulting from an inactive bimetallic complex between catalyst and free TMA presented in MAO. Decrease in MWD is observed with higher MAO concentration due to its role in chain transfer during the chain propagation. The reaction of the ligand and catalyst synthesis. [source]

Effect of Solvents on Living Polymerization of Propylene with [t -BuNSiMe2Flu]TiMe2 -MMAO Catalyst System

Kei Nishii
Abstract Summary: Batchwise polymerization of propylene was conducted at 0,°C in heptane using [tert -BuNSiMe2Flu]TiMe2 (1) combined with dried methylaluminoxane (MAO) and dried modified methylaluminoxane (MMAO), which were prepared from the toluene solutions of MAO and MMAO by removing the solvent and the free trialkylaluminium. The dried MMAO system quantitatively gave the polymer with higher molecular weight and narrower molecular weight distribution (MWD), ca. 1.3, compared with the dried MAO system. In addition, the polymerization with dried MMAO in toluene, chlorobenzene (CB) and ortho -dichlorobenzene (o -DCB), as solvent, also produced polymers quantitatively with MWD of ca. 1.1,1.3. The number-average molecular weight () of the polymers, obtained with these systems, increased linearly against the polymer yield, while the narrow MWD was retained and the number of polymer chains was almost constant. The results of post-polymerization in heptane and o -DCB proved that the living polymerization proceeded irrespective of the solvent used. The semi-batch polymerizations under an atmospheric pressure of propylene indicated that the propagation rate was more than 10 times higher in o -DCB than in heptane. The 13C NMR analysis of the polymers indicated that the syndiotacticity also depended on the polarity of the solvent and increased in the following order: CB,,,o -DCB,<,toluene,<,heptane. A plausible scheme for the interaction between active species and solvents. [source]

Prediction of Polymer Properties in LDPE Reactors

Gary J. Wells
Abstract Summary: A new analysis tool is presented that uses the governing kinetic scheme to predict properties of low-density polyethylene (LDPE) such as the detailed shape of the molecular weight distribution (MWD). A model that captures mixing details of autoclave reactor operation is used to provide a new criterion for the onset of MWD shouldering. Kinetic effects are shown to govern the existence of MWD shoulders in LDPE reactors, even when operation is far from perfectly-mixed. MWD shoulders occur when the mean reaction environment has a relatively high radical concentration and has a high polymer content, and is at a low temperature. Such conditions maximize long chain formation by polymer transfer and combination-termination, while limiting chain scission. For imperfectly-mixed reactors, the blending of polymer-distributions produced in different spatial locations has a small effect on the composite MWD. However, for adiabatic LDPE autoclaves, imperfect mixing broadens the stable range of mean reactor conditions, and thereby increases the possibility for MWD shouldering. Polymer MWD produced in an LDPE autoclave reactor by various kinetic mechanisms. [source]

Effects of Ionic Liquid [Me3NC2H4OH]+[ZnCl3], on , -Radiation Polymerization of Methyl Methacrylate in Ethanol and N,N -Dimethylformamide

Guozhong Wu
Abstract Summary: Radiation-induced polymerization of methyl methacrylate (MMA) in ethanol (EtOH) and N,N -dimethylformamide (DMF) in the presence of ionic liquid [Me3NC2H4OH]+[ZnCl3], is reported. A substantial increase in monomer conversion and molecular weight is observed at room-temperature ionic liquid (RTIL) >60 vol.-%, and the resulting PMMA has a broad multimodal MWD. A clear difference in the MWD pattern is noted between EtOH/RTIL and DMF/RTIL systems, probably due to the complicated interactions between the solvent and ionic liquid. Gel permeation chromatography traces of poly(methyl methacrylate) obtained by radiation polymerization in EtOH/RTIL and DMF/RTIL mixed solvent. Organic/RTIL (v/v): 1) 100:0; 2) 80:20; 3) 60:40; 4); 40:60; 5) 0:100. [source]

High-Pressure Polymerization of Ethylene in Tubular Reactors: A Rigorous Dynamic Model Able to Predict the Full Molecular Weight Distribution

Mariano Asteasuain
Abstract A rigorous dynamic model of the high-pressure polymerization of ethylene in tubular reactors is presented. The model is capable of predicting the full molecular weight distribution (MWD), average branching indexes, monomer conversion and average molecular weights as function of time and reactor length. The probability generating function method is applied to model the MWD. This technique allows easy and efficient calculation of the MWD, in spite of the complex mathematical description of the process. The reactor model is used to analyze the dynamic responses of MWD and other process variables under different transition policies, as well as to predict the effects of process perturbations. The influence of the material recycle on the process dynamics is also shown. [source]

Fundamental Molecular Weight Distribution of RAFT Polymers

Hidetaka Tobita
Abstract The molecular weight distribution formed in an ideal reversible addition-fragmentation chain transfer (RAFT)-mediated radical polymerization is considered theoretically. In this polymerization, the addition to the RAFT agent is reversible, and the active period on the same chain could be repeated, via the two-armed intermediate, with probability 1/2. This possible repetition is accounted for by introducing a new concept, the overall active/dormant periods. With this method, the apparent functional form of the molecular weight distribution (MWD) reduces to that proposed for the ideal living radical polymers (Tobita, Macromol. Theory Simul. 2006, 15, 12). The repetition results in a broader MWD than without the repetition. The formulae for the average molecular weights formed in batch and a continuous stirred tank reactor are also presented. [source]

Simultaneous Controllability of PSD and MWD in Emulsion Polymerisation

Stephen J. Sweetman
Abstract A sensitivity study of particle size distribution (PSD) and molecular weight distribution (MWD) responses to perturbations in initiator, surfactant, monomer and chain transfer agent in a semi-batch emulsion polymerisation is presented. The objective is to provide a systematic study on the ability to simultaneously control both PSD and MWD, towards inferential control of end-use product properties. This would lead towards identification of the practical feasible regions of operability. All inputs appeared to have an intrinsic and simultaneous influence on end-time PSD and MWD. Trends shown in experimental results have been explained in a mechanistic sense and also compared to simulation results from a combined PSD/MWD population balance model. The preliminary comparison between experiment and simulation highlights areas to be focussed on with respect to model improvement. [source]

"Living" Radical Polymerization in Tubular Reactors, 2 , Process Optimization for Tailor-Made Molecular Weight Distributions

Mariano Asteasuain
Abstract "Living" radical polymerization is a relatively new polymerization process that can be used to prepare resins with controlled structures. In this work, a mathematical model developed previously to describe nitroxide-mediated "living" radical polymerizations performed in tubular reactors is used for the optimization of the process and obtainment of tailor-made MWDs. Operating conditions and design variables are determined with the help of optimization procedures in order to produce polymers with specified MWDs. It is shown that bimodal and trimodal MWDs, with given peak locations, can be obtained through proper manipulation of the operating conditions. This indicates that the technique discussed in this work is suitable for detailed design of the MWD of the final polymer. [source]

"Living" Free Radical Polymerization in Tubular Reactors.


Abstract This is the first of a series of works aiming at developing a tool for designing "living" free radical polymerization processes in tubular reactors, in order to achieve tailor-made MWDs. A mathematical model of the nitroxide-mediated controlled free radical polymerization is built and implemented to predict the complete MWD. It is shown that this objective may be achieved accurately and efficiently by means of the probability generating function (pgf) transformation. Comparison with experimental data is good. The potential of the resulting model for optimization activities involving the complete MWD is also shown. [source]

Dynamic Monte Carlo Simulation of Graft Copolymers Made with ATRP and Metallocene Catalysts

Mamdouh Al-Harthi
Abstract The synthesis of polyolefin graft copolymers made with coordination polymerization was studied by dynamic Monte Carlo simulation. Narrow molecular weight distribution macromonomers, containing terminal vinyl groups made with atom-transfer radical polymerization (ATRP), were incorporated randomly into the polyolefin backbone. In addition to average molecular weights and polydispersity index, the model predicts the complete molecular weight distribution (MWD) and branching density of the graft copolymer. The effect of the concentration of macromonomers on the grafting efficiency was also studied. [source]

Study on the Kinetics for Enzymatic Degradation of a Natural Polysaccharide, Konjac Glucomannan

Guangji Li
Abstract The enzymatic degradation of konjac glucomannan (KGM) was conducted using ,-mannanase from an alkalophilic Bacillus sp. in the aqueous medium (pH 9.0) at 30°C. The intrinsic viscosity ([,]), molecular weight (Mw) and molecular weight distribution (MWD) of the degraded KGM were measured. The mathematical relation between [,] and Mw, [,] = 5.06 × 10,4Mw0.754, was established. The kinetic analysis reveals a dependence of the rate constant (k) on the period of reaction and the initial substrate concentration (c0) over the range of substrate concentration (1.0,2.0%) used in this work. The results indicate that the enzymatic degradation of KGM is a complex reaction combining two reaction processes with different orders. In the initial phase of degradation k is inversely proportional to c0, which is characteristic of a zeroth-order reaction; while in the following phase k is independent of c0, implying the degradation follows a first-order reaction. The reactivity difference in breakable linkages of KGM, the action mechanism of an enzyme on KGM macromolecules, and the theory concerning the formation of an enzyme-substrate complex and ,substrate saturation' can be used to explain such a kinetic behavior. In addition, the enzymatic degradation of KGM was also carried out using the other enzymes like ,-mannanase from a Norcardioform actinomycetes, ,-glucanase Finizym and a compound enzyme Hemicell as a biocatalyst. By comparing and analyzing the degradation processes of KGM catalyzed by four different enzymes, it can be observed that there is a two-stage reaction with two distinct kinetic regimes over a certain range of degradation time for each of the degradation processes. These results are useful to realize controllable degradation of polysaccharides via an environmental benign process. [source]

Telechelic Polyisobutenes with Asymmetrical Reactivity

Arno Lange
Abstract 3-Chlorocyclopentene-(1) has been used as initiator in the quasiliving cationic polymerization of isobutene. Polyisobutenes in the molecular weight range Mw = 300 - 60000 Dalton with a molecular weight distribution MWD between 1.17 and 1.34 have been synthesized. The linear polymer was selectively hydrosilated on one or both ends. With a furan coupling agent, the PIB (polyisobutene) was dimerized, yielding polymers with a cyclopentene head- and tail group. [source]

Sol MWD During Styrene, Vinyl Acetate, Methyl Methacrylate, and Butyl Acrylate Homopolymerization: A Numerical Study Using the NFT Approach

Bibiana Alejandra Yáñez-Martínez
Abstract Complete parameter sensitivity analyses using the numerical fractionation technique are presented for the cases of homopolymerization with chain transfer to polymer and termination by combination. Also, using reported values for the kinetic rate constants associated with the linear and non-linear homopolymerizations of styrene, vinyl acetate, methyl methacrylate and butyl acrylate, overall molecular weight distributions and averages of the MWD were calculated using the NFT. Good agreement with the expected behavior, with MMA and STY not gelling while BA and VAc do, was obtained. It is concluded that the NFT produces coherent and reliable performance for known polymerization systems, whether linear or non-linear. [source]

RAFT Miniemulsion Polymerization Kinetics, 2 , Molecular Weight Distribution,

Hidetaka Tobita
Abstract The molecular weight distribution formed in a RAFT polymerization conducted inside submicron particles (Dp,<,300 nm) is considered. For small particles, the MWD at low to middle conversion might be rather broad because of the large differences in MWDs formed in different polymer particles. Such a broad MWD can be made narrower by increasing the radical entry frequency. On the other hand, larger frequencies of radical entry result in a broader MWD at the final conversion levels. The number of dead polymer chains increases with time, and the dead polymer peak could be observed in the MWD at a prolonged aging time. According to this theoretical investigation, smaller particles are advantageous in implementing a faster polymerization rate, a narrower MWD, and a smaller number of dead polymer molecules. [source]

On the Production of Polyolefins with Bimodal Molecular Weight and Copolymer Composition Distributions in Catalytic Gas-Phase Fluidized-Bed Reactors

Christos Chatzidoukas
Abstract A comprehensive mathematical model is developed for the dynamic calculation of the molecular distributed properties (i.e. MWD and CCD) in a gas-phase, catalytic, ethylene-1-butene copolymerization, FBR, taking into account the various kinetic, micro- and macroscopic phenomena in the reactor. The effects of the two single-site catalyst mass fractions and reactor operating conditions on the production of polyolefins with ,tailor-made' bimodal molecular properties are investigated. It is shown that PE grades with either a bimodal MWD or CCD can be produced in a single FBR, using a mixture of two single-site catalysts under properly selected operating conditions. [source]

Addition-Fragmentation Chain Transfer to Polymer in the Free Radical Ring-Opening Polymerization of an Eight-membered Cyclic Allylic Sulfide Monomer

Marisa Phelan
Abstract Summary: A detailed investigation of chain transfer to polymer during free radical ring-opening polymerization of the eight-membered disulfide monomer 2-methyl-7-methylene-1,5-dithiacyclooctane (MDTO) is presented. It has been shown that extensive chain transfer to polymer occurs involving both poly(MDTO) radicals and cyanoisopropyl radicals. Significant decreases in molecular weight were observed when cyanoisopropyl radicals were generated in the presence of poly(MDTO) in the absence of monomer. The molecular weight distribution (MWD) obtained from polymerization of MDTO in the presence of pre-added poly(MDTO) was markedly different from that obtained without pre-added polymer. A kinetic model was constructed in an attempt to quantitatively describe the chain transfer to polymer process based on the addition fragmentation chain transfer mechanism. It was found however that the simulated MWDs were considerably broader than the experimental MWDs, which were similar to the Schulz-Flory distribution. Mechanism for chain transfer to polymer. [source]

Free Radical Bulk Polymerization of Styrene: Simulation of Molecular Weight Distributions to High Conversion Using Experimentally Obtained Rate Coefficients

Per B. Zetterlund
Abstract Previously obtained experimental conversion-dependences of the propagation rate coefficient (kp), the termination rate coefficient (kt) and the initiator efficiency (f) for the free-radical bulk polymerization of styrene at 70,°C have been used to simulate the full molecular weight distributions (MWD) to high conversion using the software package PREDICI, providing a robust test of the kinetic model adopted. Satisfactory agreement with the experimental MWD's (GPC) was obtained up to approximately 70% conversion. Beyond 70% conversion, the high MW shoulder that appears was correctly predicted, although the amount of such polymer was somewhat underestimated. This discrepancy is believed to probably have its origin in experimental error in the conversion-dependences of kp, kt and f, in particular kt, that were employed in the simulations, rather than indicate a more fundamental short-coming of the model employed. [source]

Effect of cellulose concentration in NMMO·H2O solution on prediction of MW and MWD of cellulose using a rheology-based method

Huiru Zhang
Prediction of molecular weight (MW) and molecular weight distribution (MWD) of cellulose by means of a rheology-based method is developed. In this method, the effect of cellulose concentration in N -methlymorpholine- N -oxide monohydrate (NMMO·H2O) solution on predicting results is discussed. It is shown that there is no significant effect of cellulose concentration on predicting results when the cellulose concentration in NMMO·H2O solution is high enough. Meanwhile, the obtained results are compared with those of gel permeation chromatograghy (GPC) method. The comparison shows that the calculated peak MW, polydispersity index (PDI) and MWD curves have the same trends. Consequently, it may be feasible to compare the MW and MWD of cellulose by using the rheology-based method. In addition, the rheology-based method is simple and fast. Therefore it is a useful and easy way to analyze the MW and MWD of cellulose in the fiber industry. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source]