MSC Population (msc + population)

Distribution by Scientific Domains

Selected Abstracts

Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells

IMMUNOLOGY, Issue 4 2009
Lieke C. J. Van Den Berk
Summary Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co-cultured with USSC, as evidenced by the up-regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin-12 production. So, USSCs mature iDCs, thereby redirecting the antigen-uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes. [source]

A subpopulation of mesenchymal stromal cells with high osteogenic potential

Hua Liu
Abstract Current bone disease therapy with bone marrow-derived mesenchymal stromal cells (MSC) is hampered by low efficiency. Advanced allogeneic studies on well-established mouse genetic and disease models are hindered by difficulties in isolating murine MSC (mMSC). And mMSC prepared from different laboratories exhibit significant heterogeneity. Hence, this study aimed to identify and isolate a sub-population of mMSC at an early passage number with high osteogenic potential. Enrichment of mMSC was achieved by 1-hr silica incubation and negative selection. Approximately 96% of these cells synthesized osteocalcin after 28 days of osteogenic induction in vitro, and displayed a complete dynamic alteration of alkaline phosphatase (ALP) activity with increasing osteogenic maturation and strong mineralization. Moreover, the cells displayed uniform and stable surface molecular profile, long-term survival, fast proliferation in vitro with maintenance of normal karyotype and distinct immunological properties. CD73 was found to be expressed exclusively in osteogenesis but not in adipogenesis. These cells also retained high osteogenic potential upon allogeneic transplantation in an ectopic site by the detection of bone-specific ALP, osteopontin, osteocalcin and local mineralization as early as 12 days after implantation. Hence, these cells may provide a useful source for improving current strategies in bone regenerative therapy, and for characterizing markers defining the putative MSC population. [source]

Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells,

Genevieve M. Boland
Abstract Multipotential adult mesenchymal stem cells (MSCs) are able to differentiate along several known lineages, and lineage commitment is tightly regulated through specific cellular mediators and interactions. Recent observations of a low/high bone-mass phenotype in patients expressing a loss-/gain-of-function mutation in LRP5, a coreceptor of the Wnt family of signaling molecules, suggest the importance of Wnt signaling in bone formation, possibly involving MSCs. To analyze the role of Wnt signaling in mesenchymal osteogenesis, we have profiled the expression of WNTs and their receptors, FRIZZLEDs (FZDs), and several secreted Wnt inhibitors, such as SFRPs, and examined the effect of Wnt 3a, as a representative canonical Wnt member, during MSC osteogenesis in vitro. WNT11, FZD6, SFRP2, and SFRP3 are upregulated during MSC osteogenesis, while WNT9A and FZD7 are downregulated. MSCs also respond to exogenous Wnt 3a, based on increased ,-catenin nuclearization and activation of a Wnt-responsive promoter, and the magnitude of this response depends on the MSC differentiation state. Wnt 3a exposure inhibits MSC osteogenic differentiation, with decreased matrix mineralization and reduced alkaline phosphatase mRNA and activity. Wnt 3a treatment of fully osteogenically differentiated MSCs also suppresses osteoblastic marker gene expression. The Wnt 3a effect is accompanied by increased cell number, resulting from both increased proliferation and decreased apoptosis, particularly during expansion of undifferentiated MSCs. The osteo-suppressive effects of Wnt 3a are fully reversible, i.e., treatment prior to osteogenic induction does not compromise subsequent MSC osteogenesis. The results also showed that sFRP3 treatment attenuates some of the observed Wnt 3a effects on MSCs, and that inhibition of canonical Wnt signaling using a dominant negative TCF1 enhances MSC osteogenesis. Interestingly, expression of Wnt 5a, a non-canonical Wnt member, appeared to promote osteogenesis. Taken together, these findings suggest that canonical Wnt signaling functions in maintaining an undifferentiated, proliferating progenitor MSC population, whereas non-canonical Wnts facilitate osteogenic differentiation. Release from canonical Wnt regulation is a prerequisite for MSC differentiation. Thus, loss-/gain-of-function mutations of LRP5 would perturb Wnt signaling and depress/promote bone formation by affecting the progenitor cell pool. Elucidating Wnt regulation of MSC differentiation is important for their potential application in tissue regeneration. Published 2004 Wiley-Liss, Inc. [source]

Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis

J. Mary Murphy
Objective Mesenchymal stem cells (MSCs) are resident in the bone marrow throughout normal adult life and have the capacity to differentiate along a number of connective tissue pathways, among them bone, cartilage, and fat. To determine whether functionally normal MSC populations may be isolated from patients with advanced osteoarthritis (OA), we have compared cells from patients undergoing joint replacement with cells from normal donors. Cell populations were compared in terms of yield, proliferation, and capacity to differentiate. Methods MSCs were prepared from bone marrow aspirates obtained from the iliac crest or from the tibia/femur during joint surgery. In vitro chondrogenic activity was measured as glycosaminoglycan and type II collagen deposition in pellet cultures. Adipogenic activity was measured as the accumulation of Nile Red O-positive lipid vacuoles, and osteogenic activity was measured as calcium deposition and by von Kossa staining. Results Patient-derived MSCs formed colonies in primary culture that were characteristically spindle-shaped with normal morphology. The primary cell yield in 36 of 38 cell cultures from OA donors fell within the range found in cultures from normal donors. However, the proliferative capacity of patient-derived MSCs was significantly reduced. There was a significant reduction in in vitro chondrogenic and adipogenic activity in cultures of patient-derived cells compared with that in normal cultures. There was no significant difference in in vitro osteogenic activity. There was no decline in chondrogenic potential with age in cells obtained from individuals with no evidence of OA. Conclusion These results raise the possibility that the increase in bone density and loss of cartilage that are characteristic of OA may result from changes in the differentiation profile of the progenitor cells that contribute to the homeostatic maintenance of these tissues. [source]