Home About us Contact | |||
mRNA Stabilization (mrna + stabilization)
Selected AbstractsHow adhesion, migration, and cytoplasmic calcium transients influence interleukin-1, mRNA stabilization in human monocytesCYTOSKELETON, Issue 3 2004P. Pomorski Abstract We investigated the mechanisms by which primary human monocyte migration and the production of important cytokines are co-regulated. Motile monocytes underwent cyclic morphologic and adhesive changes that were associated with intracellular free calcium changes; in such cells, cytokine transcripts were unstable and translationally repressed. Agents that activate monocytes, including lipopolysacharrides (LPS), cytomegalovirus (CMV), and tumor necrosis factor (TNF,), have been shown to de-repress translation and these agents stabilize adhesion-induced transcripts for IL-l, and IL-8 and markedly diminish cell migration in the presence of autologous serum. LPS suppressed Rho A activity and either this agent or C3 transferase elevated intracellular free calcium, stabilized transcripts, and, in tandem, inhibited cell migration by preventing tail retraction, a prerequisite for cell translocation. These results, therefore, suggest that monocyte activating agents inhibit the RhoA pathway and continuously elevate intracellular calcium leading to a concomitant decrease in monocyte migration and stabilization of cytokine transcripts prior to translation. Cell Motil. Cytoskeleton 57:143,157, 2004. © 2004 Wiley-Liss, Inc. [source] Activation of the Nrf2/antioxidant response pathway increases IL-8 expressionEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2005Xiaolan Zhang Abstract Oxidant stress can initiate or enhance inflammatory responses during tissue injury, possibly through activation of redox-sensitive chemokines. Because the transcription factor Nrf2 (NF-E2-related factor,2) is responsive to oxidative stress, and induces expression of cytoprotective and antioxidant genes that attenuate tissue injury, we postulated that Nrf2 may also regulate chemokine expression. To test this hypothesis, Nrf2 expression was directly increased in primary human kidney mesangial cells and aortic endothelial cells, or cell lines with an adenoviral construct, and the effects on the pro-inflammatory chemokine interleukin-8 (IL-8) were assessed. Nrf2 expression significantly increased IL-8 mRNA levels and protein secretion. Nrf2 caused only a weak induction of IL-8 transcription, but significantly increased the half-life of IL-8 mRNA. These data demonstrate that activation of the Nrf2/antioxidant response pathway induces expression of IL-8. The dominant mechanism of Nrf2-mediated IL-8 induction is through mRNA stabilization. Considering the evidence that Nrf2 activation is mainly cytoprotective, these observations raise the possibility that under certain circumstances IL-8 may serve an anti-inflammatory role and thereby contribute to the resolution of tissue injury. See accompanying commentary http://dx.doi.org/10.1002/eji.200535489 [source] Role of atypical protein kinase C isozymes and NF-,B in IL-1,-induced expression of cyclooxygenase-2 in human myometrial smooth muscle cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007Sara V. Duggan Increased myometrial expression of cyclooxygenase-2 (Cox-2) at term results from elevated local levels of inflammatory cytokines, and its inhibition provides a potential route for intervention in human pre-term labor. We have identified a role for atypical protein kinase C (PKC) isozymes in IL-1,-induced Cox-2 expression in human myometrial smooth muscle cells (HMSMC). The PKC inhibitor GF109203X (10 µM) inhibited IL-1,-induced Cox-2 protein and RNA expression, which were also reduced by MAPK and nuclear factor ,B (NF-,B) inhibitors. GF109203X did not affect MAPK activities, and neither did it replicate the effect of p38 MAPK inhibition on Cox-2 mRNA stability, suggesting that PKC operates through an independent mechanism. The effect of GF109203X remained intact after depletion of conventional and novel PKC isozymes by phorbol ester pre-treatment. In contrast LY379196 (10 µM), which at micromolar concentrations inhibits all but atypical PKCs, did not affect Cox-2 expression. A peptide corresponding to the pseudosubstrate sequence of atypical PKCs blocked Cox-2 protein expression, whereas the sequence from conventional PKCs was ineffective. GF109203X did not affect NF-,B binding to nuclear proteins, but strongly reduced NF-,B-dependent transcription in luciferase reporter assays. Our findings indicate that IL-1,-induced Cox-2 expression in HMSMC in culture requires p38-MAPK-mediated mRNA stabilization and an independent activation of Cox-2 transcription which is dependent on the action of atypical PKCs, probably through direct stimulation of the transactivating activity of NF-,B. J. Cell. Physiol. 210: 637,643, 2007. © 2006 Wiley-Liss, Inc. [source] Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodiesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2007Joanna J. Moser Abstract GW bodies (GWBs) are unique cytoplasmic structures that contain the mRNA binding protein GW182 and other proteins involved in mRNA processing pathways. The rationale for this study arose from clinical studies indicating that 33% of patients with GWB autoantibodies have a motor/sensory neuropathy and/or ataxia. The novelty of this study is the identification of GWBs in astrocytes and astrocytoma cells within cell bodies and cytoplasmic projections. Astrocytoma GWBs exhibit complex heterogeneity with combinations of LSm4 and XRN1 as well as Ago2 and Dicer, key proteins involved in mRNA degradation and RNA interference, respectively. GWB subsets contained the mRNA transport and stabilization proteins SYNCRIP, hnRNPA1, and FMRP, not previously described as part of the GWB complex. Immunoprecipitation of astrocytoma GWBs suggested that Dicer, hDcp, LSm4, XRN1, SYNCRIP, and FMRP form a multiprotein complex. GWBs are likely involved in a number of regulatory mRNA pathways in astrocytes and astrocytoma cells. © 2007 Wiley-Liss, Inc. [source] Potential mechanisms for astrocyte-TIMP-1 downregulation in chronic inflammatory diseasesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2006Jessica Gardner Abstract The pathogenesis of many neurodegenerative disorders, including human immunodeficiency virus (HIV)-1 associated dementia, is exacerbated by an imbalance between matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). In the context of disease, TIMP-1 has emerged as an important multifunctional protein capable of regulating inflammation. We previously reported differential TIMP-1 expression in acute versus chronic activation of astrocytes. This study investigates possible mechanisms underlying TIMP-1 downregulation in chronic neuroinflammation. We used interleukin (IL)-1, as a model pro-inflammatory stimulus and measured TIMP-1 binding to extracellular matrix, cell death, receptor downregulation, TIMP-1 mRNA stability and transcriptional regulation in activated astrocytes. TIMP-1 remained localized to the cell body or was secreted into the cell supernatant. DNA fragmentation ELISA and MTT assay showed that prolonged IL-1, activation of astrocytes induced significant astrocyte death. In acute and chronic IL-1,-activated astrocytes, IL-1 receptor levels were not significantly different. TIMP-1 mRNA stability was measured in astrocytes and U87 astroglioma cells by real-time PCR, and TIMP-1 promoter activation was studied using TIMP-1-luciferase reporter constructs in transfected astrocytes. Our results indicated that TIMP-1 expression is regulated through multiple mechanisms. Transcriptional control and loss of mRNA stabilization are, however, the most likely primary contributors to chronic downregulation of TIMP-1. These data are important for unraveling the mechanisms underlying astrocyte responses during chronic neuroinflammation and have broader implications in other inflammatory diseases that involve MMP/TIMP imbalance. © 2006 Wiley-Liss, Inc. [source] Mice deficient for RNA-binding protein brunol1 show reduction of spermatogenesis but are fertileMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 11 2007Arvind Dev Abstract RNA-binding proteins are involved in post-transcriptional processes like mRNA stabilization, alternative splicing, and transport. Brunol1 is a novel mouse gene related to elav/Bruno family of genes encoding for RNA-binding proteins. We report here the expression and functional analysis of murine Brunol1. Expression analysis of Brunol1 during embryogenesis by RT-PCR showed that Brunol1 expression starts at 9.5 dpc and continues to the later stages of embryonic development. In adult mice, the Brunol1 expression is restricted to brain and testis. We also analyzed the Brunol1 expression in testes of different mutants with spermatogenesis defects: W/WV, Tfm/y, Leyl,/,, olt/olt, and qk/qk. Brunol1 transcript was detectable in Leyl,/,, olt/olt, and qk/qk mutant but not in W/WV and Tfm/y mutants. We also showed by transfection of a fusion protein of green fluorescent protein and Brunol1 protein into NIH3T3 cells, that Brunol1 is localized in cytoplasm and nucleus. In order to elucidate the function of the Brunol1 protein in spermatogenesis, we disrupted the Brunol1 locus in mouse by homologous recombination, which resulted in a complete loss of the Brunol1 transcript. Male and female Brunol1+/, and Brunol1,/, mice from genetic backgrounds C57BL/6J,×,129/Sv hybrid and 129X1/SvJ when inbred exhibited normal phenotype and are fertile, although the number and motility of sperms are significantly reduced. An intensive phenotypic analysis showed no gross abnormalities in testis morphology. Collectively our results demonstrate that Brunol1 might be nonessential protein for mouse embryonic development and spermatogenesis. Mol. Reprod. Dev. 74: 1456,1464, 2007. © 2007 Wiley-Liss, Inc. [source] The basic and clinical implications of ABC transporters, Y-box-binding protein-1 (YB-1) and angiogenesis-related factors in human malignanciesCANCER SCIENCE, Issue 1 2003Michihiko Kuwano In our laboratories, we have been studying molecular targets which might be advantageous for novel cancer therapeutics. In this review, we focus on how ATP-binding cassette (ABC) transporter superfamily genes, Y-box-binding protein-1 (YB-1), and tumor angiogenesis-associated factors could contribute to the development of novel strategies for molecular cancer therapeutics. ABC transporters such as P-glycoprotein/MDR1 and several MRP family proteins function to protect cells from xenobiotics, drugs and poisons, suggesting that ABC transporters are a double-edged sword. In this regard, P-glycoprotein/MDR1 is a representative ABC transporter which plays a critical role in the efflux of a wide range of drugs. We have reported that gene amplification, gene rearrangements, transcription factor YB-1 and CpG methylation on the promoter are involved in MDR1 gene overexpression in cultured cancer cells. Among them, two mechanisms appear to be relevant to the up-regulation of MDR1 gene in human malignancies. We first reported that MDR1 gene promoter is activated in response to environmental stimuli, and is modulated by methylation/demethylation of CpG sites on the MDR1 promoter. We also demonstrated that YB-1 modulates not only transcription of various genes associated with cell growth, drug resistance and DNA synthesis, but also translation, mRNA stabilization and DNA repair/self-defense processes. Angiogene-sis is also involved in tumor growth, invasion and metastasis of various malignancies, and so angiogenesis-related molecules also offer novel molecular targets for anticancer therapeutics. (Cancer Sci 2003; 94: 9,14) [source] |