mRNA Levels (mrna + level)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of mRNA Levels

  • cytokine mrna level
  • decreased mrna level
  • elevated mrna level
  • increased mrna level
  • receptor mrna level
  • steady-state mrna level


  • Selected Abstracts


    Kallikrein 4 is a potential mediator of cellular interactions between cancer cells and osteoblasts in metastatic prostate cancer

    THE PROSTATE, Issue 4 2007
    Jin Gao
    Abstract BACKGROUND Prostate cancer (PCa) and bone cell interactions are critical in the metastatic phase. Kallikrein 4 (KLK4/hK4) is expressed in both PCa and mineralized tissues. We determined if KLK4/hK4 expression was associated with, and influenced by, the bone environment of metastatic PCa. METHODS Immunohistochemistry, in vitro co-culture, cell migration, and attachment assays. RESULTS hK4 was localized to tumor cells and osteoblasts in bone metastases. KLK4/hK4 increased in LNCaP and PC3 cells co-cultured with SaOs2 cells; SaOs2 KLK4/hK4 was unchanged. Co-culture did not affect cell proliferation but altered alkaline phosphatase activity/mRNA levels in SaOs2 cells. KLK4 -transfected PC3 cells had increased migration towards SaOs2 conditioned medium and greater attachment to the bone-matrix proteins, collagens I and IV. CONCLUSIONS hK4 expression and interaction with both tumor cells and osteoblasts suggests a role for hK4 in PCa bone metastasis. Whether this observation is unique to bone metastasis or reflects a role for hK4 in PCa metastasis generally is yet to be established. Prostate 67: 348,360, 2007. © 2007 Wiley-Liss, Inc. [source]


    Study of Cytochrome P4502E1 mRNA Level of Mononuclear Cells in Patients With Alcoholic Liver Disease

    ALCOHOLISM, Issue 2001
    Hirokazu Yano
    Background: Cytochrome P-4502E1 (CYP2E1) is an important enzyme because of its unique ability to convert many substrates to cytotoxins. The increased production of reactive intermediates by elevated enzyme concentrations leads to various pathological conditions. Therefore, it is important to detect induced CYP2E1 levels in alcoholic individuals to avoid xenobiotic-promoted liver injury. In the present investigation, we detected CYP2E1 mRNA levels of mononuclear cells obtained from 10 ml of blood by using competitive polymerase chain reaction (PCR) method. Methods: Mononuclear cells were obtained from healthy individuals who did and did not drink habitually and patients with alcoholic liver disease (ALD). Complementary DNA synthesis was performed with RNA obtained from mononuclear cells by reverse transcription-PCR. Competitive PCR of CYP2E1 was performed with the sense (5,-CTGCAACGTCATA-GCCGACA-3,) and antisense (5,-TCCATTTCCACGAGCAGGCA-3,) primer and competitor DNA. Competitive PCR of ,-actin also was performed. Electrophoresis was scanned, and each band was digitized. The concentration of CYP2E1 and ,-actin mRNA was calculated from the ratio of competitor DNA. Results: In healthy individuals who did and did not drink habitually, CYP2E1 mRNA levels were 103.3 copies/,l RNA and 101.7 copies/,l RNA, respectively. In actively drinking patients with ALD, CYP2E1 mRNA levels were 103.5 copies/,l RNA, but those levels decreased to 101.7 copies/,l RNA after 4 days of abstinence. No significant difference was observed in CYP2E1 mRNA levels between alcoholic fibrosis and cirrhosis. As control, we measured ,-actin mRNA levels in mononuclear cells in all samples. The mean value of ,-actin mRNA was 104.3 copies/,l RNA in all cases, which included patients with ALD. Conclusions: The results demonstrated that it is possible to measure the CYP2E1 mRNA levels of mononuclear cells in a 10 ml blood sample. The CYP2E1 mRNA level in mononuclear cells increases during drinking and decreases in abstinence for a short period of 3 to 4 days. It is concluded that CYP2E1 mRNA level may be used as an effective marker for alcoholic intake. [source]


    Growth Hormone-Releasing Peptide-6 Increases Insulin-Like Growth Factor-I mRNA Levels and Activates Akt in RCA-6 Cells as a Model of Neuropeptide Y Neurones

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2005
    L. M. Frago
    Abstract Chronic systemic administration of growth hormone (GH)-releasing peptide-6 (GHRP-6), an agonist for the ghrelin receptor, to normal adult rats increases insulin-like growth factor (IGF)-I mRNA and phosphorylated Akt (pAkt) levels in various brain regions, including the hypothalamus. Because neuropeptide Y (NPY) neurones of the arcuate nucleus express receptors for ghrelin, we investigated whether these neurones increase their IGF-I and p-Akt levels in response to this agonist. In control rats, immunoreactive pAkt was practically undetectable; however, GHRP-6 increased p-Akt immunoreactivity in the arcuate nucleus, with a subset of neurones also being immunoreactive for NPY. Immunoreactivity for IGF-I was detected in NPY neurones in both experimental groups. To determine if activation of this intracellular pathway is involved in modulation of NPY synthesis RCA-6 cells, an embryonic rat hypothalamic neuronal cell line that expresses NPY was used. We found that GHRP-6 stimulates NPY and IGF-I mRNA synthesis and activates Akt in this cell line. Furthermore, inhibition of Akt activation by LY294002 treatment did not inhibit GHRP-6 induction of NPY or IGF-I synthesis. These results suggest that some of the effects of GHRP-6 may involve stimulation of local IGF-I production and Akt activation in NPY neurones in the arcuate nucleus. However, GHRP-6 stimulation of NPY production does not involve this second messenger pathway. [source]


    Differential Effects of Placental Restriction on IGF-II, ACTH Receptor and Steroidogenic Enzyme mRNA Levels in the Foetal Sheep Adrenal

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2000
    Ross
    We have investigated the effects of restriction of placental growth on foetal adrenal growth and adrenal expression of mRNAs for Insulin-like Growth Factor II (IGF-II), the IGF binding protein IGFBP-2, Steroidogenic Factor 1 (SF-1) and adrenocorticotrophic hormone (ACTH) receptor (ACTH-R) and the steroidogenic cytochrome P-450 enzymes: cholesterol side chain cleavage (CYP11A1), 17, -hydroxylase (CYP17) and 21-hydroxylase (CYP21A1); and 3, -hydroxysteroid dehydrogenase/,5,4 isomerase (3,HSD). Endometrial caruncles were removed from non-pregnant ewes before mating (placental restriction group; PR). The total adrenal: foetal weight ratio was higher in PR (n=6 foetuses) than in control foetuses (n=6 foetuses). There was no difference in plasma ACTH concentrations between the PR and control foetuses between 130 and 140 days gestation. Adrenal IGF-II mRNA levels were lower (P<0.05) in the PR group, however, adrenal IGFBP-2 mRNA levels were not different between the PR and control groups. Adrenal ACTH-R mRNA levels were also lower whilst CYP11A1 mRNA levels were increased (P<0.005) in the PR group. We conclude that foetal adrenal growth and steroidogenesis are stimulated as a consequence of foetal growth restriction and that factors other than ACTH are important in foetal adrenal activation during chronic, sustained hypoxaemia. [source]


    TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells

    ACTA PHYSIOLOGICA, Issue 3 2010
    S. Liu
    Abstract Aim:, TRAF6 is a unique adaptor protein of the tumour necrosis factor receptor-associated factor family that mediates both tumour necrosis factor receptor (TNFR) and interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signalling. Activation of IL-1R/TLR and TNFR pathways in renal tubular cells contributes to renal injury. This study aimed to investigate if blockade of lipopolysaccharide (LPS)-triggered TLR4 signalling by small interfering RNA (siRNA) targeting TRAF6 protects survival and inhibits inflammatory response in isolated rat renal proximal tubular cells (PTCs). Methods:, PTCs isolated from F344 rat kidneys were transfected with chemically synthesized siRNA targeting TRAF6 mRNA. Real-time quantitative PCR was applied to measure mRNA level of TRAF6, TNF-,, IL-6 and monocyte chemoattractant protein-1 (MCP-1). Protein levels of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase, caspase 3 and cleaved caspase 3 were evaluated by Western blotting. Cell viability was analysed with XTT reagents. Results:, We found that the TRAF6 gene was effectively silenced in PTCs using siRNA. TRAF6 knockdown resulted in reduced TNF-, and IL-6 mRNA expression upon LPS challenge. LPS-induced phosphorylation of JNK and p38 was attenuated in TRAF6 siRNA-transfected cells while the change in the phosphorylation of ERK was not remarkable. TRAF6 knockdown was associated with increased cell viability and reduced protein level of cleaved caspase-3, both, in the absence and presence of LPS. Conclusion:, Our studies suggest that TRAF6 knockdown may inhibit inflammatory response and promote cell survival upon LPS challenge in primary rat proximal renal tubular cells. [source]


    Synthesis and degradation of type IV collagen in rat skeletal muscle during immobilization in shortened and lengthened positions

    ACTA PHYSIOLOGICA, Issue 4 2003
    A. M. Ahtikoski
    Abstract Aim:, Type IV collagen is a major protein in basement membranes surrounding and supporting skeletal muscle cells. In the present study, we tested the hypotheses that immobilization down-regulates synthesis and up-regulates degradation of type IV collagen in skeletal muscle. Methods:, mRNA level and concentration of type IV collagen as well as mRNA levels and activities of proteins involved in its degradation were analysed from soleus (SOL), gastrocnemius (GAS) and extensor digitorum longus muscles after immobilization in shortened and lengthened positions for 1, 3 and 7 days. Results:, Following immobilization, type IV collagen mRNA level was decreased in SOL and GAS suggesting down-regulated synthesis of this protein. The mRNA level and activity of matrix metalloproteinase-2 (proMMP-2) were increased in all muscles, while the activity of tissue inhibitor of metalloproteinase-2 was decreased in SOL and GAS. These findings reflect an increased capacity for degradation of type IV collagen. Conclusions: As a consequence of decreased synthesis/degradation ratio immobilization reduced the concentration of type IV collagen in all muscles. The regulation of type IV collagen through synthesis and/or degradation seems, however, to be muscle specific. Immobilization in lengthened position seems to delay and partly decrease the net degradation of type IV collagen. [source]


    An SNF2 factor involved in mammalian development and cellular proliferation

    DEVELOPMENTAL DYNAMICS, Issue 1 2001
    Eric H. Raabe
    Abstract Members of the SNF2 (Sucrose Non-Fermenter) family of chromatin-remodeling proteins function in processes ranging from DNA repair to transcription to methylation. Using differential display, we recently identified a novel member of the SNF2 family that is highly expressed at the mRNA level in proliferating cells and is down-regulated during apoptosis. We have named this gene PASG (Proliferation-Associated SNF2-like Gene). Northern blot analysis of adult mouse tissues shows PASG to be highly expressed in proliferating organs such as thymus, bone marrow, and testis and absent from nonproliferative tissues such as brain and heart. In situ hybridization analysis of mouse embryos shows that PASG is differentially expressed during development, with highest expression in developing face, limbs, skeletal muscle, heart, and tail. In vitro, PASG expression correlates with a shift from a quiescent to a proliferative state. Mice null for PASG (also known as LSH or Hells) are reported to die perinatally, although the mechanism for lethality is unclear (Geiman and Muegge, 2000). To test the hypothesis that PASG functions in cell proliferation, we compared 5-bromodeoxyuridine (BrdU) incorporation in C33A cells transiently transfected with PASG versus empty vector and found that PASG transfected cells showed a significant decrease in the amount of BrdU incorporation. These findings suggest that PASG plays a role in cell proliferation and may function in the development of multiple cell lineages during murine embryogenesis. © 2001 Wiley-Liss, Inc. [source]


    Individual variation and hormonal modulation of a sodium channel , subunit in the electric organ correlate with variation in a social signal

    DEVELOPMENTAL NEUROBIOLOGY, Issue 10 2007
    He Liu
    Abstract The sodium channel ,1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate ,1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the ,1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of ,1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the ,1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish , and coexpressed ,1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel , subunits in regulating cellular excitability. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


    Original article: The expression of CFL1 and N-WASP in esophageal squamous cell carcinoma and its correlation with clinicopathological features

    DISEASES OF THE ESOPHAGUS, Issue 6 2010
    Wei-Sen Wang
    SUMMARY Cofilin1 (CFL1) is an actin-modulating protein, which belongs to the ADF/Cofilin family. Neural Wiskott,Aldrich syndrome protein (N-WASP) is the key regulator of the actin cytoskeleton, a member of Wiskott-Aldrich syndrome protein family. They have been suggested to be involved in cancer cell invasion and metastasis. In this study, the expression patterns of CFL1 and N-WASP in normal esophageal mucosa and esophageal squamous cell carcinoma (ESCC) and their correlation with clinical characteristics were investigated. Immunohistochemical staining showed that CFL1 was expressed in nuclear and cytoplasm of cancer cells. However, N-WASP was mainly found in the cytoplasm of the cancer cells. There were significant evidences that proved that CFL1 is correlated with clinicopathological factors in ESCC, such as infiltration depth, lymph node metastasis and pathological staging (P < 0.05). It is also proved that N-WASP is related to lymph node metastasis and pathological staging in ESCC (P < 0.05). Kaplan,Meier analysis showed that there was no correlation between CFL1 and N-WASP protein expression and survival (P > 0.05). Moreover, the mRNA expression of CFL1 and N-WASP was detected by quantitative real time PCR in 70 tissue specimens. The results showed that CFL1 mRNA level was over-expressed in ESCC tissue (P < 0.05), while N-WASP mRNA expression level was not different between cancerous tissues and adjacent normal esophageal mucosa (P > 0.05). Also, CFL1 mRNA expression was significantly associated with regional lymph node metastasis and pathological staging (P < 0.05). Kaplan,Meier analysis showed that there was no correlation between CFL1 and N-WASP mRNA expression and survival (P > 0.05). Our findings suggested that CFL1 and N-WASP may play an important role in the tumorigenesis of ESCC, and to be the candidate novel biomarkers for the diagnosis and prognosis of ESCC. These findings may have implications for targeted therapies in patients with ESCC. [source]


    Comparison of anti-inflammatory activities of ruscogenin, a major steroidal sapogenin from Radix Ophiopogon japonicus, and Its succinylated derivative, RUS-2HS

    DRUG DEVELOPMENT RESEARCH, Issue 4 2008
    Ya-Lin Huang
    Abstract Ruscogenin (RUS), first isolated from Ruscus aculeatus, is also a major steroidal sapogenin of the traditional Chinese herb Radix Ophiopogon japonicus. It has robust anti-inflammatory activities. In previous studies, a ruscogenin affinity column, derived from succinylated ruscogenin (RUS-2HS), was used to purify an antibody of ruscogenin. A ruscogenin affinity column can also be used to explore its protein targets. However, until now there have been no related pharmacological reports about ruscogenin derivatives. Whether the activity groups of ruscogenin have been blocked during the derivation process remains unknown. The present study was performed to compare the anti-inflammatory activities in vitro of RUS-2HS and ruscogenin. Both compounds reduced tumor necrosis factor-, (TNF-,)-induced adhesion of human pro-myelocytic leukemia cells (HL-60) to endothelial ECV304 cells with IC50 values of 6.90,nM and 7.45,nM, respectively. They were also inhibited overexpression of ICAM-1 in ECV304 cells at the mRNA level as evaluated by real-time PCR and at the protein level evaluated by flow cytometry with similar potency. Such data demonstrate that the functional groups of ruscogenin were not blocked by derivation, suggesting further use of the ruscogenin affinity column for target investigation. Meanwhile, RUS-2HS was found to have remarkable anti-inflammatory activity for the first time, indicating it would be a new lead compound with improved bioavailability. Drug Dev Res 69: 196,202, 2008. © 2008 Wiley-Liss, Inc. [source]


    Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil

    ENVIRONMENTAL MICROBIOLOGY, Issue 3 2008
    Mette Haubjerg Nicolaisen
    Summary A modified protocol for simultaneous extraction of RNA and DNA, followed by real-time polymerase chain reaction quantification, was used to investigate tfdA gene expression during in situ degradation of the herbicide MCPA (4-chloro-2-methylphenoxy-acetic acid) in soil. tfdA encodes an ,-ketoglutarate-dependent dioxygenase catalysing the first step in the degradation pathway of MCPA and 2,4-D (2,4-dichlorophenoxy-acetic acid). A linear recovery of tfdA mRNA over three orders of magnitude was shown, and the tfdA mRNA level was normalized using the tfdA mRNA/DNA ratio. The density of active cells required for tfdA mRNA detection was 105 cells g,1 soil. Natural soil microcosms inoculated with Cupriavidus necator (formerly Ralstonia eutropha) AEO106 (pRO101) cells were amended with four different MCPA concentrations (2, 20, 50 and 150 mg kg,1). Mineralization rates were estimated by quantification of 14CO2 emission from degradation of 14C-MCPA. tfdA mRNA was detected 1 h after amendment at all four concentrations. In soils amended with 2 and 20 mg kg,1, the mRNA/DNA ratio for tfdA demonstrated a sharp transient maximum of tfdA expression from no to full expression within 3 and 6 h respectively, followed by a decline and complete loss of expression after 19 and 43 h. A more complex pattern of tfdA expression was observed for the higher 50 and 150 mg kg,1 amendments; this coincided with growth of C. necator AEO106 (pRO101) in the system. Repeated amendment with MCPA after 2 weeks in the 20 mg kg,1 scenario revealed a sharp increase of tfdA mRNA, and absence of a mineralization lag phase. For all amendments, tfdA mRNA was detectable only during active mineralization, and thus revealed a direct correlation between tfdA mRNA presence and microbial degrader activity. The present study demonstrates that direct analysis of functional gene expression dynamics by quantification of mRNA can indeed be made in natural soil. [source]


    Differential expression of antenna and core genes in Prochlorococcus PCC 9511 (Oxyphotobacteria) grown under a modulated light,dark cycle

    ENVIRONMENTAL MICROBIOLOGY, Issue 3 2001
    Laurence Garczarek
    The continuous changes in incident solar light occurring during the day oblige oxyphototrophs, such as the marine prokaryote Prochlorococcus, to modulate the synthesis and degradation rates of their photosynthetic components finely. How this natural phenomenon influences the diel expression of photosynthetic genes has never been studied in this ecologically important oxyphotobacterium. Here, the high light-adapted strain Prochlorococcus sp. PCC 9511 was grown in large-volume continuous culture under a modulated 12 h,12 h light,dark cycle mimicking the conditions found in the upper layer of equatorial oceans. The pcbA gene encoding the major light-harvesting complex showed strong diel variations in transcript levels with two maxima, one before the onset of illumination and the other near the end of the photoperiod. In contrast, the mRNA level of psbA (encoding the reaction centre II subunit D1), the monocistronic transcript of psbD (encoding D2) and the dicistronic transcript of psbDC were all tightly correlated with light irradiance, with a minimum at night and a maximum at noon. The occurrence of a second peak during the dark period for the monocistronic transcript of psbC (encoding one of the PS II core Chl a antenna proteins) suggested the involvement of post-transcriptional regulation. Differential expression of the external antenna and core genes may constitute a mechanism of regulation of the antenna size to cope with the excess photon fluxes that Prochlorococcus cells experience in the upper layer of oceans around midday. The 5, ends of all transcripts were mapped, and a conserved motif, 5,-TTGATGA-3,, was identified within the putative psbA and pcbA promoters. [source]


    Enantioselective estrogenicity of o,p'-dichlorodiphenyltrichloroethane in the MCF-7 human breast carcinoma cell line,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2009
    Lumei Wang
    Abstract Research increasingly suggests that selectivity between enantiomers may exist in acute and chronic toxicological effects of chiral contaminants. In this study, we used the human breast carcinoma MCF-7 cell line to evaluate enantioselectivity of o,p'-dichlorodiphenyltrichloroethane (o,p'-DDT). Baseline separation of o,p'-DDT enantiomers was achieved on the Chiralcel® OJ chiral column by high-performance liquid chromatography, and the absolute configuration and optical rotation of the resolved enantiomers were further identified. Significant differences in estrogenic potential were observed between the two enantiomers of o,p'-DDT in the MCF-7 cell proliferation assay (i.e., the E-Screen assay) and the real-time quantitative polymerase chain reaction (PCR). In the E-Screen assay, the relative proliferative effect ratios of R -(,)- o,p'-DDT and S -(+)- o,p'-DDT were 89.4 and 27.9%, respectively, and the relative proliferative potency ratios were 0.1 and 0.001%, respectively. Compared to the solvent control, R -(,)- o,p'-DDT induced the maximal increase of 2.31-fold at a concentration of 10,6 mol/L, while S -(+)- o,p'-DDT at 10,5 mol/L induced the maximal increase of 1.65-fold in estrogenic biomarker pS2 mRNA level. The maximal down-regulation of the transcription levels of estrogen receptor a (ER,) and ER, by R -(,)- o,p'-DDT were 49 and 40% at the concentration of 10,6 mol/L, while those by S -(+)- o,p'-DDT were 24 and 26% at the concentration of 10,5 mol/L. The cell proliferation, the up-regulation of pS2, and the down-regulation of ER, and ER, gene expressions induced by the racemate and enantiomers of o,p'-DDT were all reversed by cotreatment with 10,6 mol/L ICI 182,780. Therefore, the enantioselective estrogenicity of o,p'-DDT was likely through the ER, and ER, signaling pathways. Results from this study suggest the need for considering enantioselectivity of chiral contaminants in chronic ecological toxicities. [source]


    Fatty acid incorporation in endothelial cells and effects on endothelial nitric oxide synthase

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2007
    S. Couloubaly
    Abstract Background The nature of fatty acids provided by the diet as well as plasma lipid metabolism can modify the composition and properties of plasma membrane and thus the activity of membrane proteins. In humans, as well as in experimental models, diabetes is associated with both an alteration in serum lipid profile and a documented endothelial dysfunction. This in vitro study investigated on an immortalized human endothelial cell line (EA.hy 926) the specific effects of several free fatty acids (FFAs) on the composition of cellular membranes and the regulation of endothelial nitric oxide synthase (eNOS). Materials and methods 0·1% of lipid deprived serum was added to the incubation medium with 25 mm glucose in order to study the effects of individual fatty acids: myristic acid, palmitic acid, stearic acid, oleic acid or linoleic acid at 100 µm bound with albumin. The effects of the FFAs on the endothelial nitric oxide synthase were investigated on mRNA level by quantitative PCR, on protein level and Ser1177 phosphorylation by Western blot and on enzymatic activity on living cells using radiolabelled arginine. Results Free linoleic acid increased the membrane content in n-6 fatty acids (mainly C18: n-6 and its metabolites) with a decrease in saturated and monounsaturated fatty acids. These conditions decreased the basal eNOS activity and reduced the phosphorylation of eNOS-Ser1177 due to activation by histamine. Free palmitic acid enriched the membranes with 16 : 0 with a slight decrease in monounsaturated fatty acids. These conditions increased eNOS activation without increasing Ser1177 phosphorylation upon histamine activation. The addition of the other FFAs also resulted in modifications of membrane composition, which did not to affect eNOS-Ser1177 phosphorylation. Conclusion Among the fatty acids used, only modification of the membrane composition due to linoleic acid supply disturbed the basal enzymatic activity and Ser1177 phosphorylation of eNOS in a way that limited the role of histamine activation. Linoleic acid might involve the dysfunction of both eNOS basal activity and its phosphorylation status and may then contribute to an impaired vasodilatation in vivo. [source]


    Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis: the GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005
    Julie V. Selkirk
    Abstract Glutamate is the major excitatory neurotransmitter in the central nervous system and is tightly regulated by cell surface transporters to avoid increases in concentration and associated neurotoxicity. Selective blockers of glutamate transporter subtypes are sparse and so knock-out animals and antisense techniques have been used to study their specific roles. Here we used WAY-855, a GLT-1-preferring blocker, to assess the role of GLT-1 in rat hippocampus. GLT-1 was the most abundant transporter in the hippocampus at the mRNA level. According to [3H]- l -glutamate uptake data, GLT-1 was responsible for approximately 80% of the GLAST-, GLT-1-, and EAAC1-mediated uptake that occurs within dissociated hippocampal tissue, yet when this transporter was preferentially blocked for 120 h with WAY-855 (100 µm), no significant neurotoxicity was observed in hippocampal slices. This is in stark contrast to results obtained with TBOA, a broad-spectrum transport blocker, which, at concentrations that caused a similar inhibition of glutamate uptake (10 and 30 µm), caused substantial neuronal death when exposed to the slices for 24 h or longer. Likewise, WAY-855, did not significantly exacerbate neurotoxicity associated with simulated ischemia, whereas TBOA did. Finally, intrahippocampal microinjection of WAY-855 (200 and 300 nmol) in vivo resulted in marginal damage compared with TBOA (20 and 200 nmol), which killed the majority of both CA1,4 pyramidal cells and dentate gyrus granule cells. These results indicate that selective inhibition of GLT-1 is insufficient to provoke glutamate build-up, leading to NMDA receptor-mediated neurotoxic effects, and suggest a prominent role of GLAST and/or EAAC1 in extracellular glutamate maintenance. [source]


    Proteomic profiling reveals a catalogue of new candidate proteins for human skin aging

    EXPERIMENTAL DERMATOLOGY, Issue 10 2010
    Martin Laimer
    Abstract:, Studies of skin aging are usually performed at the genomic level by investigating differentially regulated genes identified through subtractive hybridization or microarray analyses. In contrast, relatively few studies have investigated changes in protein expression of aged skin using proteomic profiling by two-dimensional (2-D) gel electrophoresis and mass spectrometry, although this approach at the protein level is suggested to reflect more accurately the aging phenotype. We undertook such a proteomic analysis of intrinsic human skin aging by quantifying proteins extracted and fluorescently labeled from sun-protected human foreskin samples pooled from ,young' and ,old' men. In addition, we analyzed these candidate gene products by 1-D and 2-D western blotting to obtain corroborative protein expression data, and by both real-time PCR (RT-PCR) and microarray analyses to confirm expression at the mRNA level. We discovered 30 putative proteins for skin aging, including previously unrecognized, post-translationally regulated candidates such as phosphatidyl-ethanolamine binding protein (PEBP) and carbonic anhydrase 1 (CA1). [source]


    Deposition of chromatin-IgG complexes in skin of nephritic MRL-lpr/lpr mice is associated with increased local matrix metalloprotease activities

    EXPERIMENTAL DERMATOLOGY, Issue 8 2010
    Annica Hedberg
    Please cite this paper as: Deposition of chromatin-IgG complexes in skin of nephritic MRL-lpr/lpr mice is associated with increased local matrix metalloprotease activities. Experimental Dermatology 2010; 19: e265,e274. Abstract:, Chromatin-IgG complexes appear as electron dense structures (EDS) in glomerular basement membranes in lupus nephritis. Here, we present results of comparative analyses of the composition of EDS in murine lupus dermatitis and nephritis. One focus was to perform an analytical approach to understand why such complex structures bind skin basement membrane components. Transcription of skin membrane-encoding genes was analysed to see if expression of such genes was increased, eventually indicating that binding capacity of immune complexes increased when dermatitis developed. Variations in matrix metalloprotease 2 (MMP2), MMP9 and Dnase1 mRNA levels and enzymatic activities were correlated with circulatory chromatin-IgG complexes and deposition in skin. We also examined if glomerular deposits of EDS predicted similar deposits in skin of (NZB × NZW)F1 or MRL-lpr/lpr mice, as we observed chromatin-IgG complexes in capillary lumina in skin and glomeruli in both strains. EDS consisting of chromatin fragments and IgG were found sub-epidermally in skin with LE-like lesions of end-stage nephritic MRL-lpr/lpr mice. Dermal MMP-encoding genes were up-regulated during disease progression, and gelatinolytic activity was increased in affected skin. Dnase1 mRNA level and total nuclease activity remained stable in skin during the disease, in contrast to progressive loss of renal Dnase1 mRNA and total renal nuclease activity during development of nephritis. Loss of renal Dnase1 may explain release of chromatin fragments, while increased MMP activity may disrupt membranes making them accessible for chromatin fragment-IgG complexes. Circulatory chromatin-IgG complexes, and up-regulated intradermal MMP activity may be crucial for deposition of immune complexes in skin of lupus-prone mice. [source]


    The role of the cutaneous cholinergic system in guttate psoriasis

    EXPERIMENTAL DERMATOLOGY, Issue 7 2008
    W. Dyck
    In previous studies, high levels of acetylcholine (ACh) have been reported in psoriasis lesions. In addition, patients with guttate psoriasis respond to oral treatment with atropine. We wanted to know how the cutaneous cholinergic system could be involved in this process. Since mast cells (MC) are characteristic components of the inflammatory infiltrate of guttate psoriasis, we compared ACh receptor (AChR) composition and ACh production in both epidermis and mast cells of 10 patients with guttate psoriasis in involved and uninvolved skin on protein level using immunofluorescence and in a MC line (HMC-1) using PCR. We could confirm the presence of numerous MC in guttate psoriasis lesion. Both in vivo and in vitro, MC lacked expression of cholinacetyltransferase (ChAT), vesicular acetylcholintransorter (VAChT) and cholintransporter-1 (ChT-1) but contained high levels of acetylcholinesterase (AChE). In mast cells of both involved and uninvolved skin we found both nicotinic (,3, ,5, ,7, ,9, ,10, ,2 and ,4 subunits) and muscarinic (M1, M3, M4, M5) AChR. In HMC-1 cells all AChR subunits found in skin where present on mRNA level, except ,7 and ,2. In lesional epidermis both ACh production and AChR expression was shifted from the basal to the suprabasal layers especially the nicotinic ,3, ,5, ,9, ,2 and ,4 and the muscarinic M3 and M5 AChR subunits. Our results exclude a role of the cholinergic system in the initiation of keratinocyte proliferation in the basal epidermal layer but point towards a role of epidermal AChR in suprabasal processes, most likely terminal differentiation and barrier formation as has been shown in other systems. Most importantly, mast cells are targets of paracrine and endocrine effects mediated by ACh and choline thus modulating inflammatory processes like guttate psoriasis and explaining the clinical efficacity of anticholinergic drugs like atropine. [source]


    LOXL as a target to increase the elastin content in adult skin: a dill extract induces the LOXL gene expression

    EXPERIMENTAL DERMATOLOGY, Issue 8 2006
    Valérie Cenizo
    Abstract:, The lysyl oxidases lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) are responsible for elastin cross-linking. It was shown recently that LOXL is essential for the elastic fibres homeostasis and for their maintenance at adult age. We first determined whether or not elastin, LOX and LOXL are less expressed during adulthood. The LOX and LOXL mRNA level, quantified by real-time reverse transcriptase-polymerase chain reaction decreased in adult skin fibroblasts compared with fibroblasts from children. In contrast, the elastin mRNA level remains stable at all ages. The goal of this study was to induce elastogenesis at the adult age. Therefore, both enzymes, and in particular LOXL, of which expression is the most affected by age, could be targeted to induce elastogenesis in adult skin. We screened a library of about 1000 active ingredients to find activators capable to stimulate specifically the LOXL gene expression in adult dermal fibroblasts. The positive effect of selected active ingredients was confirmed on fibroblasts grown on monolayers and on dermal and skin equivalent cultures. One extract, obtained from dill (LYS'LASTINE V, Engelhard, Lyon, France), stimulates the LOXL gene expression in dermal equivalents (+64% increase in the LOXL mRNA level when compared with control). At the same time, the elastin detection is increased in dermal equivalents and under the dermal,epidermal junction of skin equivalents, without increase of the elastin mRNA. In conclusion, LOXL can be considered as a new target to reinduce elastogenesis. Its stimulation by a dill extract is correlated with increased elastin detection, suggesting an increase in elastogenesis efficiency. [source]


    Human skin: source of and target organ for angiotensin II

    EXPERIMENTAL DERMATOLOGY, Issue 3 2004
    U. Muscha Steckelings
    Abstract:, The present study examined the expression of angiotensin receptors in human skin, the potential synthesis of angiotensin II (Ang II) in this location and looked for a first insight into physiological functions. AT1 and AT2 receptors were found within the epidermis and in dermal vessel walls. The same expression pattern was found for angiotensinogen, renin and angiotensin-converting enzyme (ACE). All components could additionally be demonstrated at mRNA level in cultured primary keratinocytes, melanocytes, dermal fibroblasts and dermal microvascular endothelial cells, except for AT2 receptors in melanocytes. The ability of cutaneous cells to synthesize Ang II was proved by identifying the molecule in cultured keratinocytes. Furthermore, in artificially wounded keratinocyte monolayers, ACE-mRNA expression was rapidly increased, and enhanced ACE expression was still found in cutaneous human scars 3 months after wounding. These findings suggest that the complete renin,angiotensin system is present in human skin and plays a role in normal cutaneous homeostasis as well as in human cutaneous wound healing. [source]


    A Putative Alternatively Spliced Variant of the P2X1 Purinoreceptor in Human Bladder

    EXPERIMENTAL PHYSIOLOGY, Issue 4 2000
    L. A. Hardy
    Activation of purinergic P2X receptors, putatively P2X1, may be important in the initiation of contraction in human detrusor. Purinergic transmission may be more important in muscle taken from patients with bladder instability. In this study the presence of the P2X1 receptor subtype was confirmed using RT-PCR. In addition, the results indicate, at the mRNA level, the presence of a splice variant of P2X1 that is lacking part of the second transmembrane domain. It is therefore possible that human bladder expresses multiple isoforms of the P2X1 receptor which may be potential sites for modifying or regulating putative purinergic activation of the human bladder. [source]


    Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling

    FEBS JOURNAL, Issue 3 2009
    Lydie Laure
    In an attempt to identify potential therapeutic targets for the correction of muscle wasting, the gene expression of several pivotal proteins involved in protein metabolism was investigated in experimental atrophy induced by transient or definitive denervation, as well as in four animal models of muscular dystrophies (deficient for calpain 3, dysferlin, ,-sarcoglycan and dystrophin, respectively). The results showed that: (a) the components of the ubiquitin,proteasome pathway are upregulated during the very early phases of atrophy but do not greatly increase in the muscular dystrophy models; (b) forkhead box protein O1 mRNA expression is augmented in the muscles of a limb girdle muscular dystrophy 2A murine model; and (c) the expression of cardiac ankyrin repeat protein (CARP), a regulator of transcription factors, appears to be persistently upregulated in every condition, suggesting that CARP could be a hub protein participating in common pathological molecular pathway(s). Interestingly, the mRNA level of a cell cycle inhibitor known to be upregulated by CARP in other tissues, p21WAF1/CIP1, is consistently increased whenever CARP is upregulated. CARP overexpression in muscle fibres fails to affect their calibre, indicating that CARP per se cannot initiate atrophy. However, a switch towards fast-twitch fibres is observed, suggesting that CARP plays a role in skeletal muscle plasticity. The observation that p21WAF1/CIP1 is upregulated, put in perspective with the effects of CARP on the fibre type, fits well with the idea that the mechanisms at stake might be required to oppose muscle remodelling in skeletal muscle. [source]


    Light-induced gene expression of fructose 1,6-bisphosphate aldolase during heterotrophic growth in a cyanobacterium, Synechocystis sp.

    FEBS JOURNAL, Issue 1 2009
    PCC 680
    Synechocystis sp. PCC 6803 exhibits light-activated heterotrophic growth (LAHG) under dark conditions with glucose as a carbon source. The light activation is remarkable at a late period of photoautotrophic preculture, such as the late-linear and stationary growth phases. To understand the physiological effects of light irradiation and glucose under LAHG conditions, their effects on the expression of soluble proteins were analyzed by means of 2D-PAGE. Various soluble proteins, which were minimal under photoautotrophic preculture conditions, were observed clearly under LAHG conditions, suggesting that proteins were synthesized actively under these conditions. Fructose 1,6-bisphosphate aldolase, one of the glycolytic enzymes, was found to be induced under LAHG conditions on 2D-PAGE. The activity of fructose 1,6-bisphosphate aldolase, which had decreased during photoautotrophic preculture, also increased under LAHG conditions, similar to the mRNA level of the encoding gene, fbaA. In addition, we found that a deletion mutant of sll1330, a putative gene containing a helix-turn-helix DNA-binding motif, could not grow under LAHG conditions, whereas it could grow photoautotrophically. The increases in the protein level of FbaA and fbaA gene expression observed in wild-type cells under LAHG conditions were greatly inhibited in the deletion mutant. These results suggest that the regulation of fbaA gene expression by way of sll1330 is one of the important processes in Synechocystis sp. PCC 6803 under light pulse LAHG conditions. [source]


    Covariance of tricarboxylate carrier activity and lipogenesis in liver of polyunsaturated fatty acid (n-6) fed rats

    FEBS JOURNAL, Issue 22 2001
    Vincenzo Zara
    The mitochondrial tricarboxylate (citrate) carrier plays an important role in hepatic intermediary metabolism because, among other functions, it supplies the cytosol with acetyl units for fatty-acid synthesis. In this study, the effect of polyunsaturated fatty acids (PUFA, n-6) on the function of this mitochondrial transporter and on lipogenic enzyme activities was investigated by feeding rats for 4 weeks with a 15%-fat diet composed of high linoleic safflower oil. Citrate transport was strongly reduced in liver mitochondria isolated from PUFA-treated rats. A reduced transport activity was also observed when solubilized mitochondrial citrate carrier from PUFA-treated rats was reconstituted into liposomes. In the same animals, a decrease of cytosolic lipogenic enzyme activities was observed. These results indicate a coordinated modulation of citrate carrier and of lipogenic enzyme activities by PUFA feeding. Kinetic analysis of the carrier activity showed that only Vmax decreased, whereas Km was almost virtually unaffected. The PUFA-mediated effect is most likely due to the reduced mRNA level and lower content of the citrate carrier protein observed in the safflower oil-fed rats. [source]


    Identification of novel splice variants of the human catalytic subunit c, of cAMP-dependent protein kinase

    FEBS JOURNAL, Issue 19 2001
    Sigurd Řrstavik
    Four different isoforms of the catalytic subunit of cAMP-dependent protein kinase, termed C,, C,, C, and PrKX have been identified. Here we demonstrate that the human C, gene encodes six splice variants, designated C,1, C,2, C,3, C,4, C,4ab and C,4abc. The C, splice variants differ in their N-terminal ends due to differential splicing of four different forms of exon 1 designated exon 1-1, 1-2, 1-3, 1-4 and three exons designated a, b and c. All these exons are located upstream of exon 2 in the C, gene. The previously identified human C, variant has been termed C,1, and is similar to the C, isoform identified in the mouse, ox, pig and several other mammals. Human C,2, which is the homologue of bovine C,2, has no homologue in the mouse. Human C,3 and C,4 are homologous to the murine C,3 and C,2 splice variants, whereas human C,4ab and C,4abc represent novel isofoms previously not identified in any other species. At the mRNA level, the C, splice variants reveal tissue specific expression. C,1 was most abundantly expressed in the brain, with low-level expression in several other tissues. The C,3 and C,4 splice variants were uniquely expressed in human brain in contrast to C,2, which was most abundantly expressed in tissues of the immune system, with no detectable expression in brain. We suggest that the various C, splice variants when complexed with regulatory subunits may give rise to novel holoenzymes of protein kinase A that may be important for mediating specific effects of cAMP. [source]


    Leptin stimulates uncoupling protein-2 mRNA expression and Krebs cycle activity and inhibits lipid synthesis in isolated rat white adipocytes

    FEBS JOURNAL, Issue 19 2000
    Rolando B. Ceddia
    The treatment of rats and mice with leptin causes dramatic body fat reduction and in some cases even disappearance of fat tissue. Here, we report the effects of leptin (10 and 100 ng·mL,1) on isolated rat adipocytes maintained for 15 h in culture. Leptin decreased the incorporation of acetate into total lipids by 30%. A reduction in this incorporation (42%) was still observed after the leptin-cultivated adipocytes were exposed to a supra-physiological insulin concentration (10 000 µU·mL,1). On the other hand, leptin increased acetate degradation by 69% and the maximal activity of citrate synthase by 50% in isolated adipocytes. It also increased oleate degradation by 35 and 50% at concentrations of 10 and 100 ng·mL,1, respectively. Eventually, leptin upregulated the uncoupling protein-2 (UCP2) mRNA level by 63% and had no effect on uncoupling protein-3 (UCP3) mRNA in isolated adipocytes. The upregulation of UCP2 mRNA might have contributed to the stimulation of acetate and fatty acid degradation by leptin. The peripheral effects of leptin observed in this study are in line with the general energy dissipating role postulated for this hormone and for UCP2. They suggest mechanisms by which adipocytes regulate their fat content by an autocrine pathway without the participation of the central nervous system. [source]


    Expression and regulation of alkaline phosphatases in human breast cancer MCF-7 cells

    FEBS JOURNAL, Issue 5 2000
    Lai-Chen Tsai
    The effect of retinoic acid and dexamethasone on alkaline phosphatase (AP) expression was investigated in human breast cancer MCF-7 cells. Cellular AP activity was induced significantly by retinoic acid or dexamethasone in a time-dependent and dose-dependent fashion. A marked synergistic induction of AP activity was observed when the cells were incubated with both agents simultaneously. Two AP isozymes, tissue-nonspecific (TNAP) and intestinal (IAP), were shown to be expressed in MCF-7 cells as confirmed by the differential rate of thermal inactivation of these isozymes and RT-PCR. Based on the two-isozyme thermal-inactivation model, the specific activities for TNAP and IAP in each sample were analyzed. TNAP activity was induced only by retinoic acid and IAP activity was induced only by dexamethasone. Whereas dexamethasone conferred no significant effect on TNAP activity, retinoic acid was shown to inhibit IAP activity by , 50%. Interestingly, TNAP was found to be the only isozyme activity superinduced when the cells were costimulated with retinoic acid and dexamethasone. Northern blot and RT-PCR analysis were then used to demonstrate that the steady-state TNAP mRNA level was also superinduced, which indicates that the superinduction is regulated at the transcriptional or post-transcriptional levels. In the presence of the glucocorticoid receptor antagonist RU486, the dexamethasone-mediated induction of IAP activity was blocked completely as expected. However, the ability of RU486 to antagonize the action of glucocorticoid was greatly compromised in dexamethasone-mediated superinduction of TNAP activity. Furthermore, in the presence of retinoic acid, RU486 behaved as an agonist, and conferred superinduction of TNAP gene expression in the same way as dexamethasone. Taken together, these observations suggest that the induction of IAP activity by dexamethasone and the superinduction of TNAP by dexamethasone were mediated through distinct regulatory pathways. In addition, retinoic acid plays an essential role in the superinduction of TNAP gene expression by enabling dexamethasone to exert its agonist activity, which otherwise has no effect. [source]


    Content and biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp.

    FEMS MICROBIOLOGY LETTERS, Issue 1 2003
    PCC 680
    Abstract The effects of various NaCl and sorbitol concentrations in the growth medium on polyamine content and on two enzymes of the polyamine biosynthesis pathway, arginine decarboxylase (ADC) and S -adenosyl methionine decarboxylase (SAMDC), were investigated in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Synechocystis cells showed no difference in growth rate when the concentration of NaCl was raised up to 550 mM. The growth rate decreased at 300 mM sorbitol, and complete inhibition of growth occurred at concentrations of ,700 mM sorbitol. Salt stress induced a moderate increase in the total cellular polyamine content, spermine in particular. Osmotic stress caused an apparent increase in the total cellular polyamine content with a marked increase of spermidine induced by 700 mM sorbitol. Importantly, a low level of spermine, which so far has never been detected in cyanobacteria, could be found in Synechocystis sp. PCC 6803. ADC, a key enzyme for putrescine synthesis, was unaffected by salt stress but showed a six-fold increase in enzyme activity upon osmotic stress imposed by 700 mM sorbitol. SAMDC, another important enzyme for spermidine and spermine synthesis, responded to salt and osmotic stresses similarly to the pattern observed for ADC. An analysis by reverse transcription-polymerase chain reaction revealed an increase of ADC mRNA level in cells under salt and osmotic stresses. Most importantly, the increase of ADC mRNA was attributed to its slower turnover rate under both stress conditions. Interestingly, the samdc gene(s) of Synechocystis appear to be unique since comparisons with known gene sequences from other organisms resulted in no homologous sequences identified in the Synechocystis genome. [source]


    Proteome analysis of rat hepatic stellate cells

    HEPATOLOGY, Issue 2 2000
    Dan Bach Kristensen
    Proteome analysis was performed on cellular and secreted proteins of normal (quiescent) and activated rat hepatic stellate cells. The stellate cells were activated either in vitro by cultivating quiescent stellate cells for 9 days or in vivo by injecting rats with carbon tetrachloride for 8 weeks. A total of 43 proteins/polypeptides were identified, which altered their expression levels when the cells were activated in vivo and/or in vitro. Twenty-seven of them showed similar changes in vivo and in vitro, including up-regulated proteins such as calcyclin, calgizzarin, and galectin-1 as well as down-regulated proteins such as liver carboxylesterase 10 and serine protease inhibitor 3. Sixteen of them showed different expression levels between in vivo and in vitro activated stellate cells. These results were reproducibly obtained in 3 independent experiments. The up-regulation of calcyclin, calgizzarin, and galectin-1, as well as the down-regulation of liver carboxylesterase 10 were directly confirmed in fibrotic liver tissues. Northern blots confirmed up-regulation of the messenger RNAs (mRNAs) of calcyclin, calgizzarin, and galectin-1 in activated stellate cells, indicating that these changes were controlled at the mRNA level. In addition a list compiling over 150 stellate cell proteins is presented. The data presented here thus provide a significant new protein-level insight into the activation of hepatic stellate cells, a key event in liver fibrogenesis. [source]


    Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations,

    HUMAN MUTATION, Issue 3 2009
    Eva Pros
    Abstract Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder affecting 1:3,500 individuals. Disease expression is highly variable and complications are diverse. However, currently there is no specific treatment for the disease. NF1 is caused by mutations in the NF1 gene, approximately 2.1% of constitutional mutations identified in our population are deep intronic mutations producing the insertion of a cryptic exon into the mature mRNA. We used antisense morpholino oligomers (AMOs) to restore normal splicing in primary fibroblast and lymphocyte cell lines derived from six NF1 patients bearing three deep intronic mutations in the NF1 gene (c.288+2025T>G, c.5749+332A>G, and c.7908-321C>G). AMOs were designed to target the newly created 5, splice sites to prevent the incorporation of cryptic exons. Our results demonstrate that AMO treatment effectively restored normal NF1 splicing at the mRNA level for the three mutations studied in the different cell lines analyzed. We also found that AMOs had a rapid effect that lasted for several days, acting in a sequence-specific manner and interfering with the splicing mechanism. Finally, to test whether the correction of aberrant NF1 splicing also restored neurofibromin function to wild-type levels, we measured the amount of Ras-GTP after AMO treatment in primary fibroblasts. The results clearly show an AMO-dependent decrease in Ras-GTP levels, which is consistent with the restoration of neurofibromin function. To our knowledge this is the first time that an antisense technique has been usedsuccessfully to correct NF1 mutations opening the possibility of a therapeutic strategy for this type of mutation not only for NF1 but for other genetic disorders. Hum Mutat 30, 454,462, 2009. © 2009 Wiley-Liss, Inc. [source]