MRI Shows (mri + shows)

Distribution by Scientific Domains


Selected Abstracts


MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter

MAGNETIC RESONANCE IN MEDICINE, Issue 6 2008
Omar Zurkiya
Abstract Magnetic resonance imaging (MRI) is routinely used to obtain anatomical images that have greatly advanced biomedical research and clinical health care today, but the full potential of MRI in providing functional, physiological, and molecular information is only beginning to emerge. In this work, we sought to provide a gene expression marker for MRI based on bacterial magnetosomes, tiny magnets produced by naturally occurring magnetotactic bacteria. Specifically, magA, a gene in magnetotactic bacteria known to be involved with iron transport, is expressed in a commonly used human cell line, 293FT, resulting in the production of magnetic, iron-oxide nanoparticles by these cells and leading to increased transverse relaxivity. MRI shows that these particles can be formed in vivo utilizing endogenous iron and can be used to visualize cells positive for magA. These results demonstrate that magA alone is sufficient to produce magnetic nanoparticles and that it is an appropriate candidate for an MRI reporter gene. Magn Reson Med 59:1225,1231, 2008. 2008 Wiley-Liss, Inc. [source]


Recent advances in breast MRI and MRS

NMR IN BIOMEDICINE, Issue 1 2009
S. Sinha
Abstract Breast MRI is an area of intense research and is fast becoming an important tool for the diagnosis of breast cancer. This review covers recent advances in breast MRI, MRS, and image post-processing and analysis. Several studies have explored a multi-parametric approach to breast imaging that combines analysis of traditional contrast enhancement patterns and lesion architecture with novel methods such as diffusion, perfusion, and spectroscopy to increase the specificity of breast MRI studies. Diffusion-weighted MRI shows some potential for increasing the specificity of breast lesion diagnosis and is even more promise for monitoring early response to therapy. MRS also has great potential for increasing specificity and for therapeutic monitoring. A limited number of studies have evaluated perfusion imaging based on first-pass contrast bolus tracking, and these clearly identify that vascular indices have great potential to increase specificity. The review also covers the relatively new acquisition technique of MR elastography for breast lesion characterization. A brief survey of image processing algorithms tailored for breast MR, including registration of serial dynamic images, segmentation and extraction of morphological features of breast lesions, and contrast uptake modeling, is also included. Recent advances in MRI, MRS, and automated image analysis have increased the utility of breast MR in diagnosis, screening, management, and therapy monitoring of breast cancer. Copyright 2008 John Wiley & Sons, Ltd. [source]


Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita

ACTA NEUROLOGICA SCANDINAVICA, Issue 2 2010
C. Kornblum
Kornblum C, Lutterbey GG, Czermin B, Reimann J, von Kleist-Retzow J-C, Jurkat-Rott K, Wattjes MP. Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita. Acta Neurol Scand: 2010: 121: 131,135. 2009 The Authors Journal compilation 2009 Blackwell Munksgaard. Background,,, Muscle magnetic resonance imaging (MRI) is the most sensitive method in the detection of dystrophic and non-dystrophic abnormalities within striated muscles. We hypothesized that in severe myotonia congenita type Becker muscle stiffness, prolonged transient weakness and muscle hypertrophy might finally result in morphologic skeletal muscle alterations reflected by MRI signal changes. Aim of the study,,, To assess dystrophic and/or non-dystrophic alterations such as fatty or connective tissue replacement and muscle edema in patients with severe recessive myotonia congenita. Methods,,, We studied three seriously affected patients with myotonia congenita type Becker using multisequence whole-body high-field MRI. All patients had molecular genetic testing of the muscle chloride channel gene (CLCN1). Results,,, Molecular genetic analyses demonstrated recessive CLCN1 mutations in all patients. Two related patients were compound heterozygous for two novel CLCN1 mutations, Q160H and L657P. None of the patients showed skeletal muscle signal changes indicative of fatty muscle degeneration or edema. Two patients showed muscle bulk hypertrophy of thighs and calves in line with the clinical appearance. Conclusions,,, We conclude that (i) chloride channel dysfunction alone does not result in skeletal muscle morphologic changes even in advanced stages of myotonia congenita, and (ii) MRI skeletal muscle alterations in myotonic dystrophy must be clear consequences of the dystrophic disease process. [source]