Home About us Contact | |||
M Thick (m + thick)
Selected AbstractsEthanol Acutely Modulates mGluR1-Dependent Long-Term Depression in CerebellumALCOHOLISM, Issue 7 2010Li-Da Su Background:, Acute and chronic ethanol exposure produces profound impairments in motor functioning. Individuals with lower sensitivity to the acute motor impairing effects of ethanol have an increased risk of developing alcohol dependence and abuse, and infants with subtle delays in motor coordination development may have an increased risk for subsequently developing alcoholism. Thus, understanding the mechanism by which ethanol disrupts motor functioning is very important. Methods:, Parasagittal slices of the cerebellar vermis (250 ,M thick) were prepared from P17 to 20 Sprague,Dawley rats. Whole-cell recordings of Purkinje cells were obtained with an Axopatch 200B amplifier. Parallel fiber-Purkinje cell synaptic currents were sampled at 1 kHz and digitized at 10 kHz, and synaptic long-term depression (LTD) was observed in either external or internal application of ethanol for comparison. Results:, We determined whether ethanol acutely affects parallel fiber LTD using whole-cell patch-clamp recordings from Purkinje cells. Application of ethanol both externally (50 mM) and internally (17 and 10 mM) significantly suppressed mGluR-mediate slow currents. Short-term external ethanol exposure (50 but not 17 mM) during tetanus blocked mGluR-dependent parallel fiber LTD. Furthermore, internal 17 and 10 mM ethanol completely inhibited this LTD. Conclusions:, The results of the current study demonstrate that ethanol acutely suppresses parallel fiber LTD and may influence the mGluR-mediated slow current intracellularly. This study, plus previous evidence by Carta and colleagues (2006) and Belmeguenai and colleagues (2008), suggests significant actions of ethanol on mGluR-mediated currents and its dependent plasticity in brain. [source] Overbank deposition along the concave side of the Red River meanders, Manitoba, and its geomorphic significanceEARTH SURFACE PROCESSES AND LANDFORMS, Issue 13 2005Gregory R. Brooks Abstract Slow earth sliding is pervasive along the concave side of Red River meanders that impinge on Lake Agassiz glaciolacustrine deposits. These failures form elongated, low-angled (c. 6 to 10°) landslide zones along the valleysides. Silty overbank deposits that accumulated during the 1999 spring freshet extend continuously along the landslide zones over hundreds of metres and aggraded the lower slopes over a distance 50 to 80 m from the channel margin. The aggradation is not obviously related to meander curvature or location within a meander. Along seven slope profiles surveyed in 1999 near Letellier, Manitoba, the deposits locally are up to 21 cm thick and generally thin with increasing distance from, and height above, the river. Local deposit thickness relates to distance from the channel, duration of inundation of the landslide surface, mesotopography, and variations in vegetation cover. Immediately adjacent to the river, accumulated overbank deposits are up to 4 m thick. The 1999 overbank deposits also were present along the moderately sloped (c. 23 to 27°) concave banks eroding into the floodplain, but the deposits are thinner (locally up to c. 7 cm thick) and cover a narrower area (10 to 30 m wide) than the deposits within the landslide zones. Concave overbank deposition is part of a sediment reworking process that consists of overbank aggradation on the landslide zones, subsequent gradual downslope displacement from earth sliding, and eventually reworking by the river at the toe of the landslide. The presence of the deposits dampens the outward migration of the meanders and contributes to a low rate of contemporary lateral channel migration. Concave overbank sedimentation occurs along most Red River meanders between at least Emerson and St. Adolphe, Manitoba. © Her Majesty the Queen in right of Canada. [source] Limits of life in MgCl2 -containing environments: chaotropicity defines the windowENVIRONMENTAL MICROBIOLOGY, Issue 3 2007John E. Hallsworth Summary The biosphere of planet Earth is delineated by physico-chemical conditions that are too harsh for, or inconsistent with, life processes and maintenance of the structure and function of biomolecules. To define the window of life on Earth (and perhaps gain insights into the limits that life could tolerate elsewhere), and hence understand some of the most unusual biological activities that operate at such extremes, it is necessary to understand the causes and cellular basis of systems failure beyond these windows. Because water plays such a central role in biomolecules and bioprocesses, its availability, properties and behaviour are among the key life-limiting parameters. Saline waters dominate the Earth, with the oceans holding 96.5% of the planet's water. Saline groundwater, inland seas or saltwater lakes hold another 1%, a quantity that exceeds the world's available freshwater. About one quarter of Earth's land mass is underlain by salt, often more than 100 m thick. Evaporite deposits contain hypersaline waters within and between their salt crystals, and even contain large subterranean salt lakes, and therefore represent significant microbial habitats. Salts have a major impact on the nature and extent of the biosphere, because solutes radically influence water's availability (water activity) and exert other activities that also affect biological systems (e.g. ionic, kosmotropic, chaotropic and those that affect cell turgor), and as a consequence can be major stressors of cellular systems. Despite the stressor effects of salts, hypersaline environments can be heavily populated with salt-tolerant or -dependent microbes, the halophiles. The most common salt in hypersaline environments is NaCl, but many evaporite deposits and brines are also rich in other salts, including MgCl2 (several hundred million tonnes of bischofite, MgCl2·6H2O, occur in one formation alone). Magnesium (Mg) is the third most abundant element dissolved in seawater and is ubiquitous in the Earth's crust, and throughout the Solar System, where it exists in association with a variety of anions. Magnesium chloride is exceptionally soluble in water, so can achieve high concentrations (> 5 M) in brines. However, while NaCl-dominated hypersaline environments are habitats for a rich variety of salt-adapted microbes, there are contradictory indications of life in MgCl2 -rich environments. In this work, we have sought to obtain new insights into how MgCl2 affects cellular systems, to assess whether MgCl2 can determine the window of life, and, if so, to derive a value for this window. We have dissected two relevant cellular stress-related activities of MgCl2 solutions, namely water activity reduction and chaotropicity, and analysed signatures of life at different concentrations of MgCl2 in a natural environment, namely the 0.05,5.05 M MgCl2 gradient of the seawater : hypersaline brine interface of Discovery Basin , a large, stable brine lake almost saturated with MgCl2, located on the Mediterranean Sea floor. We document here the exceptional chaotropicity of MgCl2, and show that this property, rather than water activity reduction, inhibits life by denaturing biological macromolecules. In vitro, a test enzyme was totally inhibited by MgCl2 at concentrations below 1 M; and culture medium with MgCl2 concentrations above 1.26 M inhibited the growth of microbes in samples taken from all parts of the Discovery interface. Although DNA and rRNA from key microbial groups (sulfate reducers and methanogens) were detected along the entire MgCl2 gradient of the seawater : Discovery brine interface, mRNA, a highly labile indicator of active microbes, was recovered only from the upper part of the chemocline at MgCl2 concentrations of less than 2.3 M. We also show that the extreme chaotropicity of MgCl2 at high concentrations not only denatures macromolecules, but also preserves the more stable ones: such indicator molecules, hitherto regarded as evidence of life, may thus be misleading signatures in chaotropic environments. Thus, the chaotropicity of MgCl2 would appear to be a window-of-life-determining parameter, and the results obtained here suggest that the upper MgCl2 concentration for life, in the absence of compensating (e.g. kosmotropic) solutes, is about 2.3 M. [source] Dedifferentiation of intrinsic response properties of motoneurons in organotypic cultures of the spinal cord of the adult turtleEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000Jean-François Perrier Abstract Explant cultures from the spinal cord of adult turtles were established and used to study the sensitivity of the intrinsic response properties of motoneurons to the changes in connectivity and milieu imposed by isolation in culture. Transverse sections 700 ,m thick were explanted on cover slips and maintained in roller-tube cultures in medium containing serum and the growth factors brain-derived neurotrophin factor (BDNF), neurotrophin-3 (NT3), glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF). The gross morphology of acute sections was maintained after 4 weeks in culture. Cell bodies of motoneurons remained stainable in fixed cultures with an antibody against choline acetyltransferase (ChAT) throughout the culture period. During culture, motoneurons maintained stable resting membrane potentials and were contacted by functional synapses. The ability to generate action potentials was also preserved as was delayed inward rectification and generation of calcium spikes in the presence of tetra-ethyl ammonium (TEA). In response to depolarization, however, motoneurons presented strong outward rectification, and only 41% of the cells recorded from maintained the ability to fire repetitively. By the second week in culture, a fraction of motoneurons displayed fast and slow transient outward rectification and low-threshold calcium spikes, features not seen in turtle motoneurons in acute slices. On the other hand, properties mediated by L-type Ca2+ channels disappeared during the first few days in culture. Our observations show that the phenotypical intrinsic response properties of mature spinal motoneurons are modified in explant cultures. The properties acquired resemble the properties in juvenile motoneurons in several species of terrestrial vertebrates. [source] The Effects of Moisture in Low-Voltage Organic Field-Effect Transistors Gated with a Hydrous Solid ElectrolyteADVANCED FUNCTIONAL MATERIALS, Issue 16 2010Nikolai Kaihovirta Abstract The concept of using ion conducting membranes (50,150 ,m thick) for gating low-voltage (1 V) organic field-effect transistors (OFETs) is attractive due to its low-cost and large-area manufacturing capabilities. Furthermore, the membranes can be tailor-made to be ion conducting in any desired way or pattern. For the electrolyte gated OFETs in general, the key to low-voltage operation is the electrolyte "insulator" (the membrane) that provides a high effective capacitance due to ionic polarization within the insulator. Hydrous ion conducting membranes are easy to process and readily available. However, the role of the water in combination with the polymeric semiconductor has not yet been fully clarified. In this work electrical and optical techniques are utilized to carefully monitor the electrolyte/semiconductor interface in an ion conducting membrane based OFET. The main findings are that 1) moisture plays a major part in the transistor operation and careful control of both the ambient atmosphere and the potential differences between the electrodes are required for stable and consistent device behavior, 2) the obtained maximum effective capacitance (5 ,F cm,2) of the membrane suggests that the electric double layer is distributed over a broad region within the polyelectrolyte, and 3) electromodulation spectroscopy combined with current,voltage characteristics provide a method to determine the threshold gate voltage from an electrostatic field-effect doping to a region of (irreversible) electrochemical perturbation of the polymeric semiconductor. [source] The coupling of biological iron cycling and mineral weathering during saprolite formation, Luquillo Mountains, Puerto RicoGEOBIOLOGY, Issue 4 2005H. L. BUSS ABSTRACT Corestones of quartz diorite bedrock in the Rio Icacos watershed in Puerto Rico weather spheroidally to form concentric sets of partially weathered rock layers (referred to here as rindlets) that slowly transform to saprolite. The rindlet zone (0.2,2 m thick) is overlain by saprolite (2,8 m) topped by soil (0.5,1 m). With the objective of understanding interactions between weathering, substrate availability, and resident micro-organisms, we made geochemical and microbiological measurements as a function of depth in 5 m of regolith (soil + saprolite). We employed direct microscopic counting of total cell densities; enumeration of culturable aerobic heterotrophs; extraction of microbial DNA for yield calculations; and biochemical tests for iron-oxidizing bacteria. Total cell densities, which ranged from 2.5 × 106 to 1.6 × 1010 g,1 regolith, were higher than 108 g,1 at three depths: in the upper 1 m, at 2.1 m, and between 3.7 and 4.9 m, just above the rindlet zone. High proportions of inactive or unculturable cells were indicated throughout the profile by very low percentages of culturable heterotrophs (0.0004% to 0.02% of total cell densities). The observed increases in total and culturable cells and DNA yields at lower depths were not correlated with organic carbon or total iron but were correlated with moisture and HCl-extractable iron. Biochemical tests for aerobic iron-oxidizers were also positive at 0.15,0.6 m, at 2.1,2.4 m, and at 4.9 m depths. To interpret microbial populations within the context of weathering reactions, we developed a model for estimating growth rates of lithoautotrophs and heterotrophs based on measured substrate fluxes. The calculations and observations are consistent with a model wherein electron donor flux driving bacterial growth at the saprolite,bedrock interface is dominated by Fe(II) and where autotrophic iron-oxidizing bacteria support the heterotrophic population and contribute to bedrock disaggregation and saprolite formation. [source] Depositional environment of Sirius Group sediments, Table Mountain, Dry Valleys area, AntarcticaGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2002James R. Goff Outcrops and cores of the Sirius Group sediments were studied at Table Mountain, Dry Valleys area, Antarctica. These sediments form a surficial veneer at least 9.5 m thick. Three facies , a gravelly sandstone, a sandstone, and a sandy conglomerate , are mapped and described from 13 outcrops and three cores. The gravelly sandstone, constituting 13%of all cored material, is bimodal with matrix-supported clasts comprising 5,33%of the facies. Fabric analysis indicates that it was deposited primarily by lodgment from glacial ice but with minor elements of meltout and flow. The sandstone facies, constituting 77%of all cored material, is a well-sorted, fine- to medium-grained sand, which commonly has laminated bedding. It is predominantly a glaciofluvial deposit but has some glaciolacustrine elements. The sandy conglomerate, constituting 10%of all cored material, is a minor facies. It is massive and clast-supported. It was deposited in a high-energy environment suggestive of subglacial meltwater channels. Sirius Group sediments at Table Mountain are the result of wet-based ice advancing and retreating over waterlain deposits. This is consistent with an advancing ice mass in climatic conditions that were warmer than present. The majority of the sediments were deposited by alpine ice following a similar pathway to the present-day Ferrar Glacier and as such the depositional environment is one that concurs with evidence of a stable East Antarctic Ice Sheet approach. At Table Mountain, the predominantly glaciofluvial and glaciolacustrine facies is inferred to represent a more distal part of the Sirius Group environment than that seen at other outcrops in the Dry Valleys. [source] Stratigraphic and structural evolution of the Blue Nile Basin, Northwestern Ethiopian PlateauGEOLOGICAL JOURNAL, Issue 1 2009N. DS. Abstract The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ,1400,m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early,Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre-sedimentation phase, include pre-rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic,Early Jurassic fluvial sedimentation (Lower Sandstone, ,300,m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ,30,m thick); (c) Early,Middle Jurassic deepening of the basin (Lower Limestone, ,450,m thick); (d) desiccation of the basin and deposition of Early,Middle Jurassic gypsum; (e) Middle,Late Jurassic marine transgression (Upper Limestone, ,400,m thick); (f) Late Jurassic,Early Cretaceous basin-uplift and marine regression (alluvial/fluvial Upper Sandstone, ,280,m thick); (3) the post-sedimentation phase, including Early,Late Oligocene eruption of 500,2000,m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ,300,m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic,Cretaceous NE,SW-directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW-trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW,SE-directed extension related to the Main Ethiopian Rift that formed NE-trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E,W and NNE,SSW-directed extensions related to oblique opening of the Main Ethiopian Rift and development of E-trending transverse faults, as well as NE,SW-directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E,W-directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N-, ESE- and NW-trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd. [source] Sequence stratigraphy of the upper Millstone Grit (Yeadonian, Namurian), North WalesGEOLOGICAL JOURNAL, Issue 5 2007Rhodri M. Jerrett Abstract The upper Millstone Grit strata (Yeadonian, Namurian) of North Wales have been studied using sedimentological facies analysis and sequence stratigraphy. These strata comprise two cyclothems, each containing prodelta shales (Holywell Shale) that pass gradationally upwards into delta-front and delta-plain deposits (Gwespyr Sandstone Formation). The deltas formed in shallow water (<100,m), were fluvial-dominated, had elongate and/or sheet geometries and are assigned to highstand systems tracts. Two delta complexes with distinctive sandstone petrographies are identified: (1) a southerly derived, quartzose delta complex sourced locally from the Wales-Brabant Massif, and (2) a feldspathic delta complex fed by a regional source(s) to the north and/or west. The feldspathic delta complex extended further south in the younger cyclothem. A multistorey braided-fluvial complex (Aqueduct Grit, c. 25,m thick) is assigned to a lowstand systems tract, and occupies an incised valley that was eroded into the highstand feldspathic delta complex in the younger cyclothem. A candidate incised valley cut into the highstand feldspathic delta complex in the older cyclothem is also tentatively identified. Transgressive systems tracts are thin (<5,m) and contain condensed fossiliferous shales (marine bands). The high-resolution sequence stratigraphic framework interpreted for North Wales can be readily traced northwards into the Central Province Basin (,Pennine Basin'), supporting the notion that high-frequency, high-magnitude sea-level changes were the dominant control on stratigraphic architecture. Copyright © 2007 John Wiley & Sons, Ltd. [source] Lagoon,tidal flat sedimentation in an epeiric sea: Proterozoic Bhander Group, Son Valley, IndiaGEOLOGICAL JOURNAL, Issue 2 2001Chandan Chakraborty Abstract The Bhander Group, the uppermost stratigraphic unit of the Proterozoic Vindhyan Supergroup in Son Valley, exhibits in its upper part a 550,m thick, muddy siliciclastic succession characterized by features indicative of deposition in a wave-affected coastal, lagoon,tidal flat environment suffering repeated submergence and emergence. The basic architecture of the deposit is alternation of centimetre- to decimetre-thick sheet-like interbeds of coarser clastics (mainly sandstone) and decimetre-thick mudstones. The coarser interlayers are dominated by a variety of ripple-formed laminations. The preserved ripple forms on bed-top surfaces and their internal lamination style suggest both oscillatory and combined flows for their formation. Interference, superimposed, ladder-back and flat-topped ripples are also common. Synsedimentary cracks, wrinkle marks, features resembling rain prints and adhesion structures occur in profusion on bed-top surfaces. Salt pseudomorphs are also present at the bases of beds. The mudstone intervals represent suspension settlement and show partings with interfaces characterized by synsedimentary cracks. It is inferred that the sediments were deposited on a coastal plain characterized by a peritidal (supratidal,intertidal) flat and evaporative lagoon suffering repeated submergence and emergence due to storm-induced coastal setup and setdown in addition to tidal fluctuations. The 550,m thick coastal flat succession is surprisingly devoid of any barrier bar deposits and also lacks shoreface and shelfal strata. The large areal extent of the coastal flat succession (c. 100,000,km2) and its great thickness indicate an extremely low-gradient epeiric basin characterized by an extensive coastal flat sheltered from the deeper marine domain. It is inferred that the Bhander coastal flat was protected from the open sea by the Bundelkhand basement arch to the north of the Vindhyan basin, instead of barrier bars. Such a setting favoured accumulation of a high proportion of terrigenous mud in the coastal plain, in contrast to many described examples from the Proterozoic. Copyright © 2001 John Wiley & Sons, Ltd. [source] Magnetic Resonance Sounding: New Method for Ground Water AssessmentGROUND WATER, Issue 2 2004M. Lubczynski The advantage of magnetic resonance sounding (MRS) as compared to other classical geophysical methods is in its water selective approach and reduced ambiguity in determination of subsurface free water content and hydraulic properties of the media due to the nuclear magnetic resonance (NMR) principle applied. Two case examples are used to explain how hydrogeological parameters are obtained from an MRS survey. The first case example in Delft (the Netherlands) is a multiaquifer system characterized by large signal to noise ratio (S/N = 73), with a 24 m thick, shallow sand aquifer, confined by a 15 m thick clay layer. For the shallow aquifer, a very good match between MRS and borehole data was obtained with regard to effective porosity nc,28% and specific drainage Sd,20%. The MRS interpretation at the level deeper than 39 m was disturbed by signal attenuation in the low resistivity (,10 ,m) media. The second case of Serowe (Botswana) shows a fractured sandstone aquifer where hydrogeological parameters are well defined at depth >74 m below ground surface despite quite a low S/N = 0.9 ratio, thanks to the negligible signal attenuation in the resistive environment. Finally, capabilities and limitations of the MRS technology are reviewed and discussed. MRS can contribute to subsurface hydrostratigraphy description, hydrogeological system parameterization, and improvement of well siting. The main limitations are survey dependence upon the value of the S/N ratio, signal attenuation in electrically conductive environments, nonuniformity of magnetic field, and some instrumental limitations. At locations sufficiently resistive to disregard the signal attenuation problems, the MRS S/N ratio determines how successfully MRS data can be acquired. Both signal and noise vary spatially; therefore, world scale maps providing guidelines on spatial variability of signal and noise are presented and their importance with respect to the MRS survey results is discussed. The noise varies also temporally; therefore, its diurnal and seasonal variability impact upon the MRS survey is covered as well. [source] A First Estimate of Ground Water Ages for the Deep Aquifer of the Kathmandu Basin, Nepal, Using the Radioisotope Chlorine-36GROUND WATER, Issue 3 2001Richard G. Cresswell The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sus-tainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years. [source] High Incident Photon-to-Current Conversion Efficiency of p-Type Dye-Sensitized Solar Cells Based on NiO and Organic ChromophoresADVANCED MATERIALS, Issue 29 2009Peng Qin The synthesis and characterization of an organic dye, P4, together with its performance in p-type dye-sensitized solar cells (DSSCs) is presented. A solar-cell device based on P4 and an electrolyte that contains the I,/I3, couple in acetonitrile yielded an IPCE value of 44% on a transparent NiO film only 1,1.4,,m thick, the highest value obtained so far. [source] Lithostratigraphy of Permian marine sequences, Khao Pun Area, central Thailand: Paleoenvironments and tectonic historyISLAND ARC, Issue 2 2000Vichai Chutakositkanon Abstract Geologic mapping and subsurface lithostratigraphic investigations were carried out in the Khao Pun area (4 km2), central Thailand. More than 250 hand specimens, 70 rock slabs, and 70 thin sections were studied in conjunction with geochemical data in order to elucidate paleoenvironments and tectonic setting of the Permian marine sedimentary sequences. This sedimentary succession (2485 m thick) was re-accessed and re-grouped into three lithostratigraphic units, namely, in ascending order, the Phu Phe, Khao Sung and Khao Pun Formations. The Lower to lower Upper Permian sedimentary facies indicated the transgressive/regressive succession of shelf sea/platform environment to pelagic or abyssal environment below the carbonate compensation depth. The sedimentological and paleontological aspects, together with petrochemical and lithological points of view, reveal that the oldest unit might indicate an Early Permian sheltered shallow or lagoonal environment. Then the depositional basin became deeper, as suggested by the prolonged occurrence of bedded chert-limestone intercalation with the local exposure of shallower carbonate build-up. Following this, the depositional environment changed to pelagic deposition, as indicated by laminated radiolarian (e.g. Follicucullus sp.) cherts. This cryptic evidence might indicate the abyssal environment during middle Middle to early Late Permian; whereas, previous studies advocated shelf-facies environments. Following this, the depositional condition might be a major regression on the microcontinent close to Indochina, from the minor transgressive/regressive cycles that developed within a skeletal barrier, and through the lagoon with limited circulational and anaerobic conditions, on to the tidal flat to the sheltered lagoon without effective land-derived sediments. [source] The continuous cooling transformation (CCT) as a flexible tool to investigate polymer crystallization under processing conditionsADVANCES IN POLYMER TECHNOLOGY, Issue 2 2009V. Brucato Abstract An experimental route for investigating polymer crystallization over a wide range of cooling rates (from 0.01 to 1000°C/s) and pressures (from 0.1 to 40 MPa) is illustrated, using a method that recalls the approach adopted in metallurgy for studying structure development in metals. Two types of experimental setup were used, namely an apparatus for fast cooling of thin films (100,200 ,m thick) at various cooling rates under atmospheric pressure and a device (based on a on-purpose modified injection molding machine) for quenching massive samples (about 1,2 cm3) under hydrostatic pressure fields. In both cases, ex situ characterization experiments were carried out to probe the resulting structure, using techniques such as density measurements and wide-angle x-ray diffraction (WAXD) patterns. The cooling mechanism and temperature distribution across the sample thickness were analyzed. Results show that the final structure is determined only by the imposed thermal history and pressure. Experimental results for isotactic polypropylene (iPP), poly(ethylene terephthalate) (PET), polyamide 6 (PA6), and syndiotactic polystyrene (sPS) are reported, showing the reliability of this experimental approach to assess not only quantitative information but also a qualitative description of the crystallization behavior of different classes of semicrystalline polymers. The present study gives an opportunity to evaluate how the combined effect of the cooling rate and pressure influences the crystallization kinetics for various classes of polymer of commercial interest. An increase in the cooling rate translates into a decrease in crystallinity and density, which both experience a sudden drop around the specific "crystallizability" (or "critical cooling rate") of the material examined. The exception is sPS where competition among the various crystalline modifications determines a minimum in the plot of density vs. cooling rate. As for the effect of pressure, iPP exhibits a "negative dependence" of crystallization kinetics upon pressure, with a decrease of density and degree of crystallinity with increasing pressure, owing to kinetic constraints. PA6 and PET, on the other hand, due to thermodynamic factors resulting in an increase in Tm with pressure, exhibits a "positive dependence" of crystallization kinetics upon pressure. Finally, recent original results concerning sPS have shown that the minimum in the density vs. cooling rate curve shifts toward larger cooling rates upon increasing pressure. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 28:86,119, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20151 [source] Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007Anna Samoc Abstract We have determined the refractive indices in the directions parallel and perpendicular to the surface plane of films of deoxyribonucleic acid (DNA) and their wavelength dispersion. These parameters are fundamental for understanding the properties of waveguiding structures containing DNA-based photonic materials. The orientation of DNA molecules in films and their optical properties are sensitive to the film fabrication and environmental conditions influencing the structure. Prism coupling measurements show ambient-humidity-related changes in the refractive index, birefringence, and anisotropy of the alignment of the DNA molecules in the films studied. These films were 0.5,5 ,m thick, were prepared by both spin coating and casting from aqueous solutions containing 0.1,3 wt % DNA, and were measured in ambient air with relative humidities of 37,58%. The optical properties of the films and the orientation of the DNA molecules are discussed with respect to the mechanism for the formation of the polymer liquid-crystalline phases during film deposition. The dispersion of the refractive indices in films of native DNA has been derived from interference fringes in absorption and reflection spectra in the wavelength range of 350,2700 nm through the fitting of the positions of the fringes with the Sellmeier dispersion formula in combination with the prism coupling data. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 105: 236,245, 2007 [source] Effects of load and indicator type upon occlusal contact markingsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008Muhammad N. Saad Abstract Statement of Problem: Clinicians use occlusal indicators to identify tooth contacts. However, the reliability of these indicators has been questioned. At times occlusal contacts are not identified or false positive occlusal contacts are observed. Purpose of Study: This study was designed to compare the number and size of occlusal indicator marks from both thick and thin occlusal indicator materials with different loads. Materials and Methods: Ivorine casts were articulated and mounted on an Hana Mate nonadjustable articulator. Loads of 100N, 150N, and 200N were applied with Accufim (25 ,m thick, Parkell, Farmingdale, NY) and Articulating Paper (60 ,m thick, G.E. Rudischauer Dental Articulating Paper, Brooklyn, NY) as the occlusal indicators. A fresh piece of indicator was used for each trial. Comparisons were made of the number and size of the contacts for both the thick and thin occlusal indicators at the different loads. Results: Observation of the marks recorded with the thicker occlusal indicator demonstrated both a greater number marks and a larger size to the marks when compared to the thinner Accufilm, p , 0.02,0.0001. However, there was no significant increase in the number or size of the marks with an increased load for either material. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] In vitro change in mechanical strength of ,-tricalcium phosphate/copolymerized poly- L -lactide composites and their application for guided bone regenerationJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2002Masanori Kikuchi Abstract Novel composites of bioactive ,-tricalcium phosphate [Ca3(PO4)2] and biodegradable copolymerized poly- L -lactide (CPLA) were prepared by a heat-kneading method. The mechanical and chemical changes of the composites were evaluated in vitro by soaking in physiological saline and Dulbecco's phosphate buffered saline. When soaked in physiological saline, the 3-point mechanical strength decreased rapidly from 60 to 30 MPa in the initial 4 weeks and then gradually reached a plateau; the initial decrease in the mechanical strength was ascribed to the dissolution of ,-tricalcium phosphate from the surface. The mechanical properties evident at 8,12 weeks were sufficient for the composites to be used as a biodegradable material for regeneration of bone because the hydrolysis of CPLA was inhibited in both physiological saline and phosphate-buffered saline as a result of a pH-buffering effect. Composite membranes 250-,m thick were used to regenerate large bone defects in beagle dogs: 10 × 10 × 10 mm3 in volume in the mandible and 20 mm in length in the tibia. The afflicted areas covered with the composite membranes were almost perfectly filled with new bone 12 weeks after the operation, whereas those covered with a CPLA membrane or without any membranes were invaded by soft tissue. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62: 265,272, 2002 [source] Microscopic Age Estimation from the Anterior Cortex of the Femur in Korean Adults,JOURNAL OF FORENSIC SCIENCES, Issue 3 2009Ph.D., Seung-Ho Han M.D. Abstract:, The purpose of this study was to develop age-predicting equations from the anterior cortex of the femur of Korean adults. Seventy-two femoral samples (44 male and 28 female) were obtained from Korean cadavers and used to develop the equations. The thin sections (<100-,m thick) were prepared by manual grinding; the sections were not decalcified and were stained with Villanueva bone stain reagent. Analysis of covariance showed no significant differences in age-adjusted histomorphological variables between sexes. In stepwise regression analysis, osteon population density, average osteon area, and the most anterior cortical width were selected for an age-predicting equation which produced a high regression correlation (R2 = 0.789). The average Haversian canal area was not significantly related to age for any specimen. [source] Assessment of Histomorphological Features of the Sternal End of the Fourth Rib for Age Estimation in Koreans,JOURNAL OF FORENSIC SCIENCES, Issue 6 2007M.S., Yi-Suk Kim M.D. Abstract:, The aim of this study was to assess the histomorphological features of the fourth rib and to develop age-predicting equations for Koreans. Sixty-four rib samples (36 males and 28 females) obtained from forensic cases were used for developing equations. Two thin sections (<100-,m thick) per sample were prepared by manual grinding. Multivariate analysis of covariance revealed statistically significant differences in age-adjusted histomorphological variables between sexes. Using stepwise regression analysis, osteon population density and average osteon area were correlated with unknown sex (r2 = 0.826), and sex plus two histomorphological variables provided the best results for an age-predicting equation given the assumption of knowing the sex of a specimen (r2 = 0.839). Average Haversian canal area had little influence on age estimation for male or female samples, and relative cortical area was not significantly related to age for any specimen. [source] Drying-induced birefringence of polyimide optical filmsAICHE JOURNAL, Issue 3 2010Po-Ju Chen Abstract Drying-induced birefringence of polyimide film was investigated. The polyimide solutions were coated and dried on two different types of substrates and then removed for optical measurements. The operating window, which was a region for stable and uniform film formation, was determined experimentally. The out-of-plane birefringence (OPBR) was found to increase with decreasing dry film thickness, and the increase became more significant for films less than 10 ,m thick. The experimental OPBR results were compared with the predictions of two theoretical models. The results agreed reasonably well with the one-dimensional model of Lei et al. (J Appl Polym Sci. 2001;81:1000-1013). On the other hand, a simple viscoelastic model, which is an extension of the elastic model of Croll (J Appl Polym Sci. 1979;23:847-858), could provide clear physical insight, but its applicability was somewhat limited. The effects of several variables such as elasticity number, solidification concentration, yield stress, and mass transfer rate on OPBR were examined. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] A 3D HIGH RESOLUTION MODEL OF BOUNDING SURFACES IN AEOLIAN-FLUVIAL DEPOSITS: AN OUTCROP ANALOGUE STUDY FROM THE PERMIAN ROTLIEGEND, NORTHERN GERMANYJOURNAL OF PETROLEUM GEOLOGY, Issue 3 2007C. Fischer The fluvial-aeolian Rotliegend succession exposed in a quarry near Magdeburg (Flechtinger Höhenzug, Northern Germany) is an analogue for deeply-buried gas-bearing Rotliegend sandstones in the Southern Permian Basin. The spatial configuration of bounding surfaces within this succession was reconstructed with reference to twelve profiles with 926 sample points. Generally sub-horizontal interdune migration surfaces were surveyed, and the areal extent of small-scale superimposition surfaces and the thicknesses of intervening strata were measured. Based on these observations and also on the extent of different lithofacies types and on corresponding porosity and permeability data, a 3D lithofacies model (including bounding surface configurations) incorporating porosity and radial permeability was created using PETRELTÔ software. In the quarry, aeolian sandstones approximately 12 m thick (,, 5-11 vol. %, ,radial, 0.01-10mD) are separated into a number of tabular bed sets by sub-horizontal interdune migration surfaces. The surfaces are often associated with thin pelitic intervals with low permeabilities which originate from deflation and sheet flow events. Aeolian deposits consist mainly of two lithotypes: low-angle cross-bedded, and steeply cross-bedded medium-grained sandstones. Superimposition surfaces occur at the base of the low-angle cross-bedded sandstone bodies. The highest porosities and permeabilities occur within the steeply cross-bedded sandstones, reflecting intense eodiagenetic calcite and quartz cementation with subsequent calcite dissolution. The low-angle cross-bedded sandstones may act as flow baffles. This outcrop-derived, high resolution model may contribute to a better understanding of the subsurface architecture and reservoir properties of aeolian-fluvial successions. Taking into consideration the centimetre- to metre-scaled inhomogeneities observed at outcrop, lithotype modelling with reference to the occurrence of bounding surfaces may help to predict how similar reservoir rocks are partitioned. [source] ROSS AND BUDE FORMATIONS (CARBONIFEROUS, IRELAND AND ENGLAND): REINTERPRETED AS LAKE-SHELF TURBIDITESJOURNAL OF PETROLEUM GEOLOGY, Issue 1 2004R. Higgs The Ross Formation (Namurian, Ireland) and the near-identical Bude Formation (Westphalian, England), both amply described in the literature, are used by oil companies as deep-sea-fan reservoir analogues. However, the Ross Formation is reinterpreted here, like the Bude Formation in recent publications, to be composed of river-fed turbidites deposited on the wave-influenced northern shelf of a Variscan foreland-basin lake, which also had a southern flysch trough. Key features of these formations are: (i) two classes of thin (, 0.4m) sandstone "event bed" in shale comprising (a) structureless turbidite-like beds, and (b) rippled beds with combined-flow ripples and/or hummocky cross-stratification, neither structure having previously been reported from the Ross Formation; (ii) "trademark" tabular packets (1,10 m) of amalgamated event beds which interfinger laterally with mudstones; (iii) sharp packet bases and tops; (iv) rare sinuous channel fills; and (v) rare thick (1,10m) shale units, each containing a thin (cm-dm) fossiliferous band. The fossil bands are interpreted here as maximum flooding surfaces, reflecting glacioeustatic marine incursions over the lake spill point (sill), forcing the lake to rise and to turn marine or strongly brackish; these bands define Galloway-type depositional sequences 50,100 m thick. During eustatic falls, the lake was forced down to sill level, where it perched and turned fresh (desalination). Intervals containing sandstone packets are attributed to the falling-stage and lowstand systems tracts, each packet representing a higher-order lowstand systems tract. Packets are interpreted as tongue shaped, supplied by river-fed underflows. Packet bases (sharp) represent the storm-wave-graded equilibrium shelf profile, glacioeustatically forced to its lowstand position. On this erosion surface were deposited underflow turbidites produced by floods in the catchment. Occasional catastrophic storms on the lake shaved these turbidites and interfingering fair-weather muds back down to the equilibrium level, leaving behind a subsidence-accommodated increment whose surface was sculpted by storm wind and wave currents, forming hummocks, combined-flow ripples and erosional megaflutes. Whenever a river-fed underflow accompanied one of these storms, the resulting highly erosive combined flow carved a sinuous channel on the wave-sculpted equilibrium surface. Sandstone-shale intervals separating the sandstone packets are interpreted as transgressive- and highstand systems tracts. They contain both turbidites and wave-modified turbidites (rippled beds), deposited on the out-of-equilibrium drowned shelf. A gradual rotation in sole-mark direction with time in both formations is attributed to a reversal of Coriolis deflection as the plate drifted north across the equator, causing underflows (deflected along-shelf geostrophically) to flow first NEwards and then SWwards on an inferred SE-facing shelf. The lack of evidence for emergence in the Ross and Bude Formations, in spite of the great thicknesses (460m and 1,290m, respectively) of these shallow-water deposits, is attributed to regulation of minimum water depth firstly by the lake sill blocking eustatically-forced exposure, and secondly by storm grading, preventing emergence by sedimentation. [source] Fusarium eumartii Growth in Resistant and Susceptible Oak SpeciesJOURNAL OF PHYTOPATHOLOGY, Issue 9 2001A. Ragazzi Fusarium eumartii is a fungus associated with declining Quercus robur, in which it is found in the vessels. The response of oak species to infection is known to vary: Q. robur is susceptible, but Quercus cerris and Quercus pubescens are resistant. An experiment was carried out in 1996 and repeated in 1997, to examine how F. eumartii colonization differed in oak species that were susceptible or resistant to the fungus by counting the number of vessels with mycelium at various distances from the inoculation site in infected seedlings and by determining the amount of viable fungus in infected tissue. Infected vessels with mycelium were counted on sections (10 ,m thick) cut at 0, 2, 4, 6, 8 and 10 cm from the inoculation site on 1-year-old inoculated seedlings as well as on sections cut every 2 cm to the seedling tip. The amount of viable fungus was determined by counting the colony forming units (CFUs) in stem segments from the same seedlings. Quercus robur seedlings had the greatest number of infected vessels and the greatest number of CFUs. Forty days after inoculation, the extent of vertical fungal spread was 28.12 cm in Q. robur, 3.15 cm in Q. cerris and 3.00 cm in Q. pubescens. The greatest number of CFUs was found in Q. robur at day 5 after inoculation. Analysis of variance confirmed the results. [source] Laminar Ceramics Utilizing the Zirconia Tetragonal-to-Monoclinic Phase Transformation to Obtain a Threshold StrengthJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2002Michael G. Pontin Ceramic laminates have been fabricated with thin layers, containing a mixture of unstabilized zirconia (MZ-ZrO2) and alumina (Al2O3), sandwiched between thicker layers of alumina that contain a small fraction of Y2O3 -stabilized tetragonal ZrO2 to inhibit grain growth. The MZ-ZrO2 undergoes a tetragonal-to-monoclinic phase transformation during cooling to produce biaxial compressive stresses in the thin layers. Cracks that extend within the thicker alumina layers can be arrested by the compressive layers to produce a threshold strength, i.e., a strength below which the probability of failure is zero. Laminates composed of Al2O3 layers 315 ± 15 ,m thick and Al2O3/MZ-ZrO2 layers 29 ± 3 ,m thick exhibit a threshold strength of 507 ± 36 MPa, regardless of the MZ-ZrO2 content, for volume fractions ,0.35. These results, piezospectroscopic stress measurements, and microstructural observations suggest that microcracking produced during the transformation reduces the magnitude of the compressive stresses achieved, which in turn limits the magnitude of the threshold strength. [source] Lead Zirconate Titanate Thin Films on Base-Metal Foils: An Approach for Embedded High-Permittivity Passive ComponentsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2001Jon-Paul Maria An approach for embedding high-permittivity dielectric thin films into glass epoxy laminate packages has been developed. Lead lanthanum zirconate titanate (Pb0.85La0.15(Zr0.52Ti0.48)0.96O3, PLZT) thin films were prepared using chemical solution deposition on nickel-coated copper foils that were 50 ,m thick. Sputter-deposited nickel top electrodes completed the all-base-metal capacitor stack. After high-temperature nitrogen-gas crystallization anneals, the PLZT composition showed no signs of reduction, whereas the base-metal foils remained flexible. The capacitance density was 300,400 nF/cm2, and the loss tangent was 0.01,0.02 over a frequency range of 1,1000 kHz. These properties represent a potential improvement of 2,3 orders of magnitude over currently available embedded capacitor technologies for polymeric packages. [source] Fabrication of Free-Standing Titania-Based Gas Sensors by the Oxidation of Metallic Titanium FoilsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2000Pelagia I. Gouma A simple method for fabricating TiO2 -based sensors of CO(g) is demonstrated: the oxidation of Ti-bearing foils. Metallic foils (35 ,m thick) were converted into free-standing, porous rutile foils (60 ,m thick) by exposure to O2(g) at 800°,965°C. The oxidized foils contained thin (0.5,1 ,m thick), regularly spaced oxide layers oriented parallel to the external surface. The exposure of such porous foils to increasing concentrations of CO(g) resulted in a monotonic increase in the steady-state electrical resistance. Rutile foils sensitive to 50 ppm changes in CO(g) content with response times of a few minutes were produced. The effects of oxidation conditions and copper doping on sensing performance are discussed. [source] Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modelingMETEORITICS & PLANETARY SCIENCE, Issue 7 2004Dieter Stöffler We present and interpret results of petrographic, mineralogical, and chemical analyses of the 1511 m deep ICDP Yaxcopoil-1 (Yax-1) drill core, with special emphasis on the impactite units. Using numerical model calculations of the formation, excavation, and dynamic modification of the Chicxulub crater, constrained by laboratory data, a model of the origin and emplacement of the impact formations of Yax-1 and of the impact structure as a whole is derived. The lower part of Yax-1 is formed by displaced Cretaceous target rocks (610 m thick), while the upper part comprises six suevite-type allochthonous breccia units (100 m thick). From the texture and composition of these lithological units and from numerical model calculations, we were able to link the seven distinct impact-induced units of Yax-1 to the corresponding successive phases of the crater formation and modification, which are as follows: 1) transient cavity formation including displacement and deposition of Cretaceous "megablocks;" 2) ground surging and mixing of impact melt and lithic clasts at the base of the ejecta curtain and deposition of the lower suevite right after the formation of the transient cavity; 3) deposition of a thin veneer of melt on top of the lower suevite and lateral transport and brecciation of this melt toward the end of the collapse of the transient cavity (brecciated impact melt rock); 4) collapse of the ejecta plume and deposition of fall-back material from the lower part of the ejecta plume to form the middle suevite near the end of the dynamic crater modification; 5) continued collapse of the ejecta plume and deposition of the upper suevite; 6) late phase of the collapse and deposition of the lower sorted suevite after interaction with the inward flowing atmosphere; 7) final phase of fall-back from the highest part of the ejecta plume and settling of melt and solid particles through the reestablished atmosphere to form the upper sorted suevite; and 8) return of the ocean into the crater after some time and minor reworking of the uppermost suevite under aquatic conditions. Our results are compatible with: a) 180 km and 100 km for the diameters of the final crater and the transient cavity of Chicxulub, respectively, as previously proposed by several authors, and b) the interpretation of Chicxulub as a peak-ring impact basin that is at the transition to a multi-ring basin. [source] Mineralogy and petrology of melt rocks from the Popigai impact structure, SiberiaMETEORITICS & PLANETARY SCIENCE, Issue 5 2002J. Whitehead The fine-grained to cryptocrystalline texture of the more melt-rich rocks, despite their occurrence in bodies locally in excess of 800 m thick and 28 km long, suggests that the melt crystallized in response to (1) cooling by the clast load, and/or; (2) rapid nucleation on finely brecciated clasts, which have since been assimilated and/or; (3) crystallization enhanced by the relatively low water contents of the melts. Rapid crystallisation of the melt is indicated by the lack of zoning in minerals, the presence of glass, the lack of strain recovery features in clasts and the lack of evidence for fractionation in the major and trace elements, including the rare earth elements. Optical and analytical electron microscopy reveal that the previously reported division of the melt rocks into high- and low-temperature variants based on hand sample appearance, or glass content, is not warranted. Clasts within the melt-rich rocks exhibit a wide range of shock metamorphic features, though they are not distributed in the impact melts in a systematic manner. This indicates that the melt-rich rocks were well mixed during their formation, thus juxtaposing unshocked with shocked material. Injection of mesostasis melt into partially melted checkerboard plagioclase and orthopyroxene clasts also occurred during this mixing stage. [source] Upregulation of immunoreactivity of endothelin-1 and ,-SMA in PDL microvasculature following acute tooth loading: an immunohistochemical study in the marmosetORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 2 2003MR Sims Structured Abstract Authors , Sims MR, Ashworth JF, Sampson WJ Objectives , To test the hypothesis that a continuous mechanical tooth load would elevate immunoreactivity of endothelin-1 (ET-1) and alpha-smooth muscle actin (,-SMA) in the periodontal ligament (PDL) microvasculature. Design , A randomized control study employing 1.5 h of loading to first molars. Setting and Sample Population , Orthodontic Research Laboratory, Dental School, Adelaide University. Four young adult, male marmoset monkeys were consecutively anaesthetized and treated. Experimental Variable , An external telescoping frame applied a jaw closing load (120,200 g) transmitted occlusally, via a rubber pad, to randomly assigned mandibular left or right first molars. Contralateral molars were used as controls. Outcome Measure , Undemineralized, midsagittal, mandibular molar slices, ,150 ,m thick were immunolabelled with ET-1 and ,-SMA antibodies and examined in a confocal laser scanning microscope (CLSM) for vascular endothelium and smooth muscle immunolabelling. Results , Three categories of post-capillary-sized venule endothelial cell immunolabelling occurred: endothelium labelled solely with ET-1; endothelium labelled solely with ,-SMA; endothelium labelled with both ET-1 and ,-SMA. In endothelial cells, the ,-SMA showed a moderate cytoplasmic distribution with dense peripheral concentration. Loading increased arteriole ,-SMA actin labelling. Conclusion , Scattered expression of ET-1 is the default state in primate PDL endothelial cells. Increased antigenicity of endothelial cells to both ET-1 and ,-SMA, and of arteriolar smooth muscle to ,-SMA, is a response to shear and compression loads. [source] |