M Mannitol (m + mannitol)

Distribution by Scientific Domains


Selected Abstracts


Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2001
Shao-Ling Huang
Abstract Targeted echogenic liposome dispersions for ultrasonic enhancement of vasoactive and pathological components of endothelium and atherosclerosis have recently been developed. The component lipids required for acoustic and targeting properties include phosphatidylcholine, phosphatidylethanolamine phosphatidylglycerol (PG), and cholesterol (CH), initially in a 60:8:2:30 mol % ratio. Component lipids, lyophilization, sugars, and freezing conditions were varied to optimize acoustic ultrasound reflectivity and acoustic stability. Echogenic liposome dispersions were made by using the dehydration,rehydration process. The lipid concentrations were varied (CH in the range 1 to 40 mol % and PG from 1 to 16 mol %). Variations in type and concentration of sugars were examined. The effect of freezing conditions and re-lyophilization was examined. Ultrasound reflectivity was assessed by using a 20-MHz intravascular ultrasound catheter and computer-assisted videodensitometry. Ultrasound reflectivity was optimized at a CH concentration of 10 mol %; PG concentration variation had essentially no effect on initial values of echogenicity. Optimal acoustic stability was observed with concentrations of 10,15 mol % CH and with a PG concentration greater than 4 mol %. Preparations made with 0.2 M mannitol were more ultrasound reflective than those made with lactose, trehalose, and sucrose. Re-lyophilization and freezing temperatures below ,20°C increased ultrasound reflectivity. We optimized the ultrasound properties of echogenic liposomal dispersions, the conditions of which provide some insight into the underlying lipid structures responsible. The preparations developed are now more stable and acoustically reflective than our previous preparations. This advances the development of echogenic lipid dispersions as targeted ultrasound contrast agents for use in general ultrasound as well as cardiovascular imaging. © 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1917,1926, 2001 [source]


Characterization of Acanthamoeba Isolates from Dust of a Public Hospital in Curitiba, Paraná, Brazil

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 1 2010
ADRIANA O. COSTA
ABSTRACT. Occurrence of Acanthamoeba in the hospital environment may represent a health risk for patients, since these organisms can cause severe opportunistic illness, such as keratitis, and also can harbor pathogenic agents. We analyzed the dust from some environments of a public hospital in Curitiba, Parana State, Brazil. Two distinct populations of Acanthamoeba were isolated in five locations and morphologically classified as group I and group II according to Pussard and Pons. Isolates were identified as Acanthamoeba by PCR using primers to amplify a region of 18S rDNA, which showed variation in the product length among the isolates. A cloned culture of group II showed greater growth at 37 °C and in media with 0.1, 0.5, and 1.0 M mannitol, which are the physiological characteristics of pathogenic Acanthamoeba. Monitoring the presence of Acanthamoeba in hospital units, as well as evaluating the pathogenicity of the isolates, can be an approach to alert the health professionals to improve the disinfection procedures and minimize the risks of treating this problematic disease caused by this protozoan. [source]


Effect of mannitol pretreatment to improve green plant regeneration on isolated microspore culture in Triticum turgidum ssp. durum cv. ,Jennah Khetifa'

PLANT BREEDING, Issue 6 2007
Z. Labbani
Abstract The use of doubled haploids improves the efficiency of cultivar development in many crops and can be helpful in genetic and molecular studies. The major problem with this approach is the low efficiency of green plant regeneration. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat cv. ,Jennah Khetifa'. Tillers from donor plants were pretreated in 0.3 m mannitol and were stored at 4°C at various times: 3, 5, 6, 7, 8, 10 and 12 days. Our results showed clearly that the novel pretreatment combined mannitol 0.3 m and cold for 7 days had a strong effect on the number of embryos produced and regenerated green plants. Under this condition 13 475 mature embryos were produced from 2 693 500 microspores. Moreover, 85 green plants were obtained. High green plants regeneration frequency was recorded. As an average 11.55 green plants were produced per 100 000 microspores (about the equivalent of six plants per spike). Therefore, this study showed clearly that our results are the best ones published until now in durum wheat. [source]


Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana

THE PLANT JOURNAL, Issue 1 2003
Miho Ikeda-Iwai
Summary Somatic embryogenesis is an obvious experimental evidence of totipotency, and is used as a model system for studying the mechanisms of de-differentiation and re-differentiation of plant cells. Although Arabidopsis is widely used as a model plant for genetic and molecular biological studies, there is no available tissue culture system for inducing somatic embryogenesis from somatic cells in this plant. We established a new tissue culture system using stress treatment to induce somatic embryogenesis in Arabidopsis. In this system, stress treatment induced formation of somatic embryos from shoot-apical-tip and floral-bud explants. The somatic embryos grew into young plantlets with normal morphology, including cotyledons, hypocotyls, and roots, and some embryo-specific genes (ABI3 and FUS3) were expressed in these embryos. Several stresses (osmotic, heavy metal ion, and dehydration stress) induced somatic embryogenesis, but the optimum stress treatment differed between different stressors. When we used mannitol to cause osmotic stress, the optimal conditions for somatic embryogenesis were 6,9 h of culture on solid B5 medium containing 0.7 m mannitol, after which the explants were transferred to B5 medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 4.5 µm), but no mannitol. Using this tissue culture system, we induced somatic embryogenesis in three major ecotypes of Arabidopsis thaliana, Ws, Col, and Ler. [source]