Home About us Contact | |||
M Elevation (m + elevation)
Selected AbstractsDesert pavement dynamics: numerical modeling and field-based calibrationEARTH SURFACE PROCESSES AND LANDFORMS, Issue 13 2007Jon D. Pelletier Abstract Desert pavements are widely used as a relative surface-dating tool because they are progressively better developed on surfaces ranging from thousands to hundreds of thousands of years in age. Recent work, however, has highlighted the dynamic nature of pavements and undermined their use as surface-age indicators. Quade (2001) proposed that latest Pleistocene vegetation advances destroyed all Mojave Desert pavements above 400 m elevation, making all such pavements Holocene in age. In an effort to reconcile young-pavement evidence with their widespread use as Pleistocene surface-age indicators, we developed a numerical model based on the classic conceptual model in which pavements co-evolve with their underlying eolian epipedons over millennial timescales. In this co-evolutionary process, fine-grained eolian deposition and Av -horizon development within the eolian epipedon promotes surface clast motion and pavement development, enhancing the eolian-sediment-trapping ability of the pavement in a positive feedback. Model results illustrate the multi-scale nature of pavement dynamics: pavements may require tens of thousands of years to fully develop from a newly abandoned alluvial surface, but may heal over timescales of decades to centuries if a mature eolian epipedon is present. As such, there is no inconsistency between rapid pavement healing and a Pleistocene age for the underlying alluvial surface. To calibrate the model, we conducted surficial geologic mapping and pavement-sedimentological analysis on two desert piedmonts. Our study areas include both proximal and distal fan environments, illustrating the role of parent-material texture in controlling the mode of pavement formation. Using available geochronology, our work provides a rigorous calibration of pavement formation rates in our study areas and provides evidence supporting the use of pavements as local relative surface-age indicators over Holocene to late Pleistocene timescales. Copyright © 2007 John Wiley & Sons, Ltd. [source] Arterial blood gas parameters of normal foals born at 1500 metres elevationEQUINE VETERINARY JOURNAL, Issue 1 2010E. S. HACKETT Summary Reasons for performing study: Arterial blood gas analysis is widely accepted as a diagnostic tool to assess respiratory function in neonates. To the authors' knowledge, there are no published reports of arterial blood gas parameters in normal neonatal foals at altitude. Objective: To provide information on arterial blood gas parameters of normal foals born at 1500 m elevation (Fort Collins, Colorado) in the first 48 h post partum. Hypothesis: Foals born at 1500 m will have lower PaO2 and PaCO2 than foals born at sea level due to low inspired oxygen and compensatory hyperventilation occurring at altitude. Methods: Sixteen foals were studied. Arterial blood gas analysis was performed within 1 h of foaling and subsequent samples were evaluated at 3, 6, 12, 24 and 48 h post partum. Data were compared to those previously reported in healthy foals born near sea level. Results: Mean PaO2 was 53.0 mmHg (7.06 kPa) within 1 h of foaling, rising to 67.5 mmHg (9.00 kPa) at 48 h post partum. PaCO2 was 44.1 mmHg (5.88 kPa) within one hour of foaling, falling to 38.3 mmHg (5.11 kPa) at 48 h. Both PaO2 and PaCO2 were significantly lower in foals born at 1500 m elevation than those near sea level at several time points during the first 48 h. Conclusions and potential relevance: Foals at 1500 m elevation undergo hypobaric hypoxia and compensatory hyperventilation in the first 48 h. Altitude specific normal arterial blood values are an important reference for veterinarians providing critical care to equine neonates. [source] The Geologic Basis for a Reconstruction of a Grounded Ice Sheet in McMurdo Sound, Antarctica, at the Last Glacial MaximumGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2-3 2000George H. Denton A grounded ice sheet fed from the Ross Embayment filled McMurdo Sound at the last glacial maximum (LGM). This sheet deposited the little-weathered Ross Sea drift sheet, with far-traveled Transantarctic Mountains (TAM) erratics, on lower slopes of volcanic islands and peninsulas in the Sound, as well as on coastal forelands along the TAM front. The mapped upper limit of this drift, commonly marked by a distinctive moraine ridge, shows that the ice-sheet surface sloped landward across McMurdo Sound from 710 m elevation at Cape Crozier to 250 m in the eastern foothills of the Royal Society Range. Ice from the Ross Embayment flowed westward into the sound from both north and south of Ross Island. The northern flowlines were dominant, deflecting the southern flowlines toward the foothills of the southern Royal Society Range. Ice of the northern flowlines distributed distinctive kenyte erratics, derived from western Ross Island, in Ross Sea drift along the TAM front between Taylor and Miers Valleys. Lobes from grounded ice in McMurdo Sound blocked the mouths of TAM ice-free valleys, damming extensive proglacial lakes. A floating ice cover on each lake formed a conveyor that transported glacial debris from the grounded ice lobes deep into the valleys to deposit a unique glaciolacustrine facies of Ross Sea drift. The ice sheet in McMurdo Sound became grounded after 26,860 14C yr bp. It remained near its LGM position between 23,800 14C yr bp and 12,700 14C yr bp. Recession was then slow until sometime after 10,794 14C yr bp. Grounded ice lingered in New Harbor in the mouth of Taylor Valley until 8340 14C yr bp. The southward-retreating ice-sheet grounding line had penetrated deep into McMurdo Sound by 6500 14C yr bp. The existence of a thick ice sheet in McMurdo Sound is strong evidence for widespread grounding across the Ross Embayment at the LGM. Otherwise, the ice-sheet surface would not have sloped landward, nor could TAM erratics have been glacially transported westward into McMurdo Sound from farther offshore in the Ross Embayment. [source] Regionalization of methane emissions in the Amazon Basin with microwave remote sensingGLOBAL CHANGE BIOLOGY, Issue 5 2004John M. Melack Abstract Wetlands of the Amazon River basin are globally significant sources of atmospheric methane. Satellite remote sensing (passive and active microwave) of the temporally varying extent of inundation and vegetation was combined with field measurements to calculate regional rates of methane emission for Amazonian wetlands. Monthly inundation areas for the fringing floodplains of the mainstem Solimões/Amazon River were derived from analysis of the 37 GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer from 1979 to 1987. L-band synthetic aperture radar data (Japanese Earth Resources Satellite-1) were used to determine inundation and wetland vegetation for the Amazon basin (<500 m elevation) at high (May,June 1996) and low water (October 1995). An extensive set of measurements of methane emission is available from the literature for the fringing floodplains of the central Amazon, segregated into open water, flooded forest and floating macrophyte habitats. Uncertainties in the regional emission rates were determined by Monte Carlo error analyses that combined error estimates for the measurements of emission and for calculations of inundation and habitat areas. The mainstem Solimões/Amazon floodplain (54,70°W) emitted methane at a mean annual rate of 1.3 Tg C yr,1, with a standard deviation (SD) of the mean of 0.3 Tg C yr,1; 67% of this range in uncertainty is owed to the range in rates of methane emission and 33% is owed to uncertainty in the areal estimates of inundation and vegetative cover. Methane emission from a 1.77 million square kilometers area in the central basin had a mean of 6.8 Tg C yr,1 with a SD of 1.3 Tg C yr,1. If extrapolated to the whole basin below the 500 m contour, approximately 22 Tg C yr,1 is emitted; this mean flux has a greenhouse warming potential of about 0.5 Pg C as CO2. Improvement of these regional estimates will require many more field measurements of methane emission, further examination of remotely sensed data for types of wetlands not represented in the central basin, and process-based models of methane production and emission. [source] Elevational gradients of small mammal diversity on the northern slopes of Mt. Qilian, ChinaGLOBAL ECOLOGY, Issue 6 2003Jun Sheng Li ABSTRACT Aim, Small mammal species richness and relative abundance vary along elevational gradients, but there are different patterns that exist. This study reports the patterns of distribution and abundance of small mammals along the broader elevational gradient of Mt. Qilian range. Location, The study was conducted in the Mt. Qilian range, north-western China, from June to August 2001. Methods, Removal trapping was conducted using a standardized technique at 7 sites ranging between 1600 and 3900 m elevation within three transects. Correlation, regression and graphical analyses were used to evaluate the diversity patterns along this elevational gradient. Results, ,In total, 586 individuals representing 18 nonvolant small mammal species were collected during 20 160 trap nights. Species composition was different among the three transects with 6 (33%) of the species found only within one transect. Elevational distribution and relative abundance of small rodents showed substantial spatial variation, with only 2 species showing nonsignificant capture frequencies across elevations. Despite these variations, some general patterns of elevational distribution emerged: humped-shape relationships between species diversity and elevation were noted in all three transects with diversity peaks at middle elevations. In addition, relative abundance was negatively correlated with elevation. Conclusions, Results indicate that maximum richness and diversity of nonvolant small mammals occurred at mid-elevations where several types of plants reached their maximum diversity and primary productivity, and where rainfall and humidity reached a maximum. It is demonstrated that the mid-elevation bulge is a general feature of at least a large portion of the biota on the Mt. Qilian range. [source] Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methodsHYDROLOGICAL PROCESSES, Issue 13 2006F. Holwerda Abstract The deposition of fog to a wind-exposed 3 m tall Puerto Rican cloud forest at 1010 m elevation was studied using the water budget and eddy covariance methods. Fog deposition was calculated from the water budget as throughfall plus stemflow plus interception loss minus rainfall corrected for wind-induced loss and effect of slope. The eddy covariance method was used to calculate the turbulent liquid cloud water flux from instantaneous turbulent deviations of the surface-normal wind component and cloud liquid water content as measured at 4 m above the forest canopy. Fog deposition rates according to the water budget under rain-free conditions (0·11 ± 0·05 mm h,1) and rainy conditions (0·24 ± 0·13 mm h,1) were about three to six times the eddy-covariance-based estimate (0·04 ± 0·002 mm h,1). Under rain-free conditions, water-budget-based fog deposition rates were positively correlated with horizontal fluxes of liquid cloud water (as calculated from wind speed and liquid water content data). Under rainy conditions, the correlation became very poor, presumably because of errors in the corrected rainfall amounts and very high spatial variability in throughfall. It was demonstrated that the turbulent liquid cloud water fluxes as measured at 4 m above the forest could be only ,40% of the fluxes at the canopy level itself due to condensation of moisture in air moving upslope. Other factors, which may have contributed to the discrepancy in results obtained with the two methods, were related to effects of footprint mismatch and methodological problems with rainfall measurements under the prevailing windy conditions. Best estimates of annual fog deposition amounted to ,770 mm year,1 for the summit cloud forest just below the ridge top (according to the water budget method) and ,785 mm year,1 for the cloud forest on the lower windward slope (using the eddy-covariance-based deposition rate corrected for estimated vertical flux divergence). Copyright © 2006 John Wiley & Sons, Ltd. [source] From ice age to modern: a record of landscape change in an Andean cloud forestJOURNAL OF BIOGEOGRAPHY, Issue 9 2010B. G. Valencia Abstract Aim, To investigate the palaeoecological changes associated with the last ice age, subsequent deglaciation and human occupation of the central Andes. Location, Lake Pacucha, Peruvian Andes (13°36,26, S, 73°19,42, W; 3095 m elevation). Methods, Vegetation assemblages were reconstructed for the last 24 cal. kyr bp (thousand calibrated 14C years before present), based on pollen analysis of sediments from Lake Pacucha. An age model was established using 14C accelerator mass spectrometry dates on bulk sediment. Fossil pollen and sedimentological analyses followed standard methodologies. Results, Puna brava replaced the Andean forest at the elevation of Lake Pacucha at the Last Glacial Maximum (LGM). Deglaciation proceeded rapidly after 16 cal. kyr bp, and near-modern vegetation was established by c. 14 cal. kyr bp. The deglacial was marked by the range expansion of forest taxa as grassland taxa receded in importance. The mid-Holocene was marked by a lowered lake level but relatively unchanged vegetation. Quinoa and maize pollen were found in the latter half of the Holocene. Main conclusions, Temperatures were about 7,8 °C colder than present at this site during the LGM. The pattern of vegetation change was suggestive of microrefugial expansion rather than simple upslope migration. The mid-Holocene droughts were interrupted by rainfall events sufficiently frequent to allow vegetation to survive largely unchanged, despite lowering of the lake level. Human activity at the lake included a 5500-year history of quinoa cultivation and 3000 years of maize cultivation. [source] Historical biogeographical patterns of the species of Bursera (Burseraceae) and their taxonomic implicationsJOURNAL OF BIOGEOGRAPHY, Issue 11 2006David Espinosa Abstract Aim, The plant genus Bursera, with 104 species of trees and shrubs, has been used as a model for biogeographical analyses because of its high species richness and large number of endemic species. The biogeographical patterns of Bursera and their implications for its phylogenetic classification are reviewed in order that some hypotheses on the historical biogeography of tropical Mexico can be proposed. Location,Bursera is found in the south-western USA, most of Mexico, mainly below 1700 m elevation in tropical forests, with some species in xeric shrublands, diversifying along the Pacific slope, Central America, and north-western South America. A few species occur on the Galapagos and Revillagigedo archipelagos, some of which are endemics, whereas in the Antilles species are distributed extensively, with several endemics in the Bahamas, Cuba, Jamaica, and Hispaniola. Methods, Data from specimens in herbaria and the literature were used to construct a matrix of 104 species in 160 areas. Distributional patterns of the species of Bursera were inferred applying track analysis, parsimony analysis of endemicity (PAE), and Brooks parsimony analysis (BPA). Results, Track analysis revealed four individual tracks: (1) a circum-Caribbean track, comprising species of the Bursera simaruba species group; (2) an Antillean track, including species that have been transferred to Commiphora based on their pollen traits; (3) a Mexican Pacific track, including species of the B. fragilis, B. microphylla, and B. fagaroides species groups, called ,cuajiotes'; and (4) a Neotropical Pacific track, including the two species groups assigned to section Bullockia, in which the individual track of the Bursera copallifera species group is nested within the track of the B. glabrifolia species group. The four tracks overlap in a node in the Mexican Pacific slope, where they are highly diversified. PAE allowed us to identify 22 areas of endemism: 12 in Mexico (11 along the Mexican Pacific slope), six in the Antilles, two in Central America, one in South America, and one in the Galapagos. The general area cladogram obtained by BPA has two main clades: one includes the greater Antilles; and the other, 12 Mexican areas of endemism. Main conclusions,Bursera fragilis, B. microphylla, and B. fagaroides species groups can be treated together as a new section within Bursera, sect. Quaxiotea, because they are segregated from the other groups of sect. Bursera based on morphological, anatomical, molecular and geographical evidence. [source] Modern pollen precipitation from an elevational transect in central Jordan and its relationship to vegetationJOURNAL OF BIOGEOGRAPHY, Issue 10 2001Caroline P. Davies Aim To explore the relationship between modern pollen precipitation and vegetation patterns in an arid region of the Middle East. Location Data come from the central Jordan Rift from 1700 m elevation in the highlands to 300 m below sea level in the Dead Sea basin. Methods Modern pollen samples and descriptive vegetation data were collected from twenty-one locations at 100 m elevational intervals from the highest elevations on the eastern side of the rift valley, where woodlands grow, to the lowest elevation desert on earth, characterized by drought and salt tolerant plants. Pollen percentage data from each vegetation zone are compared descriptively and numerically using cluster and Principal Components Analyses (PCA). Results Three major vegetation zones: woodland, shrub steppe, and desert scrub, are identified by their dominant plant species. The widely spaced tree, Quercus calliprinos Webb, defines the Quercus L. woodland that grows above 1500 m elevation. The shrub steppe can be divided into two subzones found between about 1500 and 900 m elevation: Artemisia herba-alba Asso shrub steppe and Artemisia L. shrub steppe with Juniperus phoenica L. Desert scrub dominates the lower elevation landscape with Hammada salicornia (Moq.) Iljin the dominant shrub between 900 and 200 m and Haloxylon persicum Bge. found below 200 m elevation. Pollen spectra reflect the elevational vegetation zones. In particular, Quercus L., Juniperus L. and Tamarix L. pollen are abundant where the trees grow. Highly variable amounts of non-arboreal pollen taxa , primarily Artemisia L. and Chenopodiaceae Vent. , differentiate shrub steppe from desert scrub vegetation. Cluster and PCA of pollen data support the qualitative vegetation zonation. Main conclusions The main vegetation zones along the Jordan Rift from 1700 to ,300 m elevation can be distinguished by their modern pollen precipitation. Open vegetation types, in particular, can be recognized by their pollen spectra. High amounts of Artemisia L. pollen distinguish the moister upper elevations where Artemisia L. steppe grows. In contrast, greater amounts of Chenopodiaceae Vent. pollen characterize the drier, lower elevation deserts. [source] Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes,JOURNAL OF QUATERNARY SCIENCE, Issue 3 2008Holger Niemann Abstract In order to study the stability and dynamics of mountain rainforest and paramo ecosystems, including the biodiversity of these ecosystems, the Holocene and late Pleistocene climate and fire variability, and human impact in the southeastern Ecuadorian Andes, we present a high-resolution pollen record from El Tiro Pass (2810,m elevation), Podocarpus National Park. Palaeoenvironmental changes, investigated by pollen, spores and charcoal analysis, inferred from a 127,cm long core spanning the last ca. 21,000,cal. yr BP, indicate that grass-paramo was the main vegetation type at the El Tiro Pass during the late Pleistocene period. The grass-paramo was rich in Poaceae, Plantago rigida and Plantago australis, reflecting cold and moist climatic conditions. During the early Holocene, from 11,200 to 8900,cal. yr BP, subparamo and upper mountain rainforest vegetation expanded slightly, indicating a slow warming of climatic conditions during this period. From 8900 to 3300,cal. yr BP an upper mountain rainforest developed at the study site, indicated by an increase in Hedyosmun, Podocarpaceae, Myrsine and Ilex. This suggests a warmer climate than the present day at this elevation. The modern subparamo vegetation became established since 3300,cal. yr BP at El Tiro Pass. Fires, probably anthropogenic origin, were very rare during the late Pleistocene but became frequent after 8000,cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd. [source] Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highlandMEDICAL AND VETERINARY ENTOMOLOGY, Issue 3 2004N. Minakawa Abstract., Anopheline larval habitats associated with a swamp, were examined in a highland area (1910 m elevation) of western Kenya. A significant association was found between occurrence of Anopheles gambiae Giles s.s. (Diptera: Culicidae) larvae and two factors, habitat size and vegetation type. Over 80% of An. gambiae s.s. larvae were found in small isolated pools, characterized by short plants, occurring in both swamp margins and roadside ditches. However, Anopheles gambiae s.s. was not found in habitats marked by papyrus and floating plants. The larval habitat of An. gambiae s.s. was characterized by warmer daytime temperatures of water, which were significantly affected by habitat size and plant size. The density of indoor resting An. gambiae s.s. was 0.22 per house and negatively associated with distance from the swamp. These results indicate that the practice of swamp cultivation, in populated areas of the African highlands, increases availability and enhances habitat conditions for the malaria vector. [source] Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversityMOLECULAR ECOLOGY RESOURCES, Issue 2009DANIEL H. JANZEN Abstract Inventory of the caterpillars, their food plants and parasitoids began in 1978 for today's Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0,2000 m elevation contains at least 10 000 species of non-leaf-mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG-reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co-authors. DNA barcoding , the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species , was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to ,variation' or thought to be insignificant for species-level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution. [source] Revegetation Methods for High-Elevation Roadsides at Bryce Canyon National Park, UtahRESTORATION ECOLOGY, Issue 2 2004S. L. Petersen Abstract Establishment of native plant populations on disturbed roadsides was investigated at Bryce Canyon National Park (BCNP) in relation to several revegetation and seedbed preparation techniques. In 1994, the BCNP Rim Road (2,683,2,770 m elevation) was reconstructed resulting in a 23.8-ha roadside disturbance. Revegetation comparisons included the influence of fertilizer on plant establishment and development, the success of indigenous versus commercial seed, seedling response to microsites, methods of erosion control, and shrub transplant growth and survival. Plant density, cover, and biomass were measured 1, 2, and 4 years after revegetation implementation (1995,1998). Seeded native grass cover and density were the highest on plots fertilized with nitrogen and phosphorus, but by the fourth growing season, differences between fertilized and unfertilized plots were minimal. Fertilizers may facilitate more rapid establishment of seeded grasses following disturbance, increasing soil cover and soil stability on steep and unstable slopes. However the benefit of increased soil nutrients favored few of the desired species resulting in lower species richness over time compared to unfertilized sites. Elymus trachycaulus (slender wheatgrass) plants raised from indigenous seed had higher density and cover than those from a commercial seed source 2 and 4 years after sowing. Indigenous materials may exhibit slow establishment immediately following seeding, but they will likely persist during extreme climatic conditions such as cold temperatures and relatively short growing seasons. Seeded grasses established better near stones and logs than on adjacent open microsites, suggesting that a roughened seedbed created before seeding can significantly enhance plant establishment. After two growing seasons, total grass cover between various erosion-control treatments was similar indicating that a variety of erosion reduction techniques can be utilized to reduce erosion. Finally shrub transplants showed minimal differential response to fertilizers, water-absorbing gels, and soil type. Simply planting and watering transplants was sufficient for the greatest plant survival and growth. [source] Elevational gradients in species abundance, assemblage structure and energy use of rainforest birds in the Australian Wet Tropics bioregionAUSTRAL ECOLOGY, Issue 6 2010STEPHEN E. WILLIAMS Abstract Elevational patterns of species richness, local abundance and assemblage structure of rainforest birds of north-eastern Australia were explored using data from extensive standardized surveys throughout the region. Eighty-two species of birds were recorded with strong turnover in assemblage structure across the elevational gradient and high levels of regional endemism in the uplands. Both species richness and bird abundance exhibited a humped-shaped pattern with elevation with the highest values being between 600 and 800 m elevation. While much of the variability in species richness could be explained by the species,area relationship, analyses of net primary productivity (NPP) and total daily energy consumption of the bird community (energy use) suggest that ecosystem energy flow or constraints may be a significant determinant of species richness. Species richness is positively correlated with local bird abundance which itself is closely related to total energy use of the bird community. We suggest the hypothesis that lower NPP limits bird abundance and energy use in the uplands (>500 m) and that low bird energy use and species richness in the lowlands is limited by a seasonal bottleneck in available primary productivity and/or a species pool previously truncated by an extinction filter imposed by the almost complete disappearance of rainforest in the lowlands during the glacial maxima. We suggest that some of the previously predicted impacts of global warming on biodiversity in the uplands may be partially ameliorated by increases in NPP because of increasing temperatures. However, these relationships are complex and require further data specifically in regard to direct estimates of primary productivity and detailed estimates of energy flow within the assemblage. [source] Species richness and structure of three Neotropical bat assemblagesBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2008KATJA REX We compared the assemblages of phyllostomid bats in three Neotropical rainforests with respect to species richness and assemblage structure and suggested a method to validate estimates of species richness for Neotropical bat assemblages based on mist-netting data. The fully inventoried bat assemblage at La Selva Biological Station (LS, 100 m elevation) in Costa Rica was used as a reference site to evaluate seven estimators of species richness. The Jackknife 2 method agreed best with the known bat species richness and thus was used to extrapolate species richness for an Amazonian bat assemblage (Tiputini Biodiversity Station; TBS, 200 m elevation) and an Andean premontane bat assemblage (Podocarpus National Park; BOM, 1000 m elevation) in Ecuador. Our results suggest that more than 100 bat species occur sympatrically at TBS and about 50 bat species coexist at BOM. TBS harbours one of the most species-rich bat assemblages known, including a highly diverse phyllostomid assemblage. Furthermore, we related assemblage structure to large-scale geographical patterns in floral diversity obtained from botanical literature. Assemblage structure of these three phyllostomid assemblages was influenced by differences in floral diversity at the three sites. At the Andean site, where understorey shrubs and epiphytes exhibit the highest diversity, the phyllostomid assemblage is mainly composed of understorey frugivores and nectarivorous species. By contrast, canopy frugivores are most abundant at the Amazonian site, coinciding with the high abundance of canopy fruiting trees. Assemblage patterns of other taxonomic groups also may reflect the geographical distribution patterns of floral elements in the Andean and Amazonian regions. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94, 617,629. [source] Soil Charcoal in Old-Growth Rain Forests from Sea Level to the Continental DivideBIOTROPICA, Issue 6 2007Beyhan Titiz ABSTRACT Soil charcoal is an indicator of Holocene fires as well as a palaeoecological signature of pre-Colombian land use in Neotropical rain forests. To document rain forest fire history, we examined soil charcoal patterns in continuous old-growth forests along an elevational transect from sea level to the continental divide on the Atlantic slope of Costa Rica. At 10 elevations we sampled 1-ha plots, using 16 cores/ha to collect 1.5-m deep soil samples. We found charcoal in soils at every elevation, with total dry mass ranging from 3.18 g/m2 at 2000-m elevation to as much as 102.7 g/m2 at 300 m. Soil charcoal is most abundant at the wettest lowland sites (60,500 m) and less at montane elevations (> 1000 m) where there is less rainfall. Between 30- and 90-cm soil depth, soil charcoal is present consistently and every 1-ha plot has charcoal evidence for multiple fire events. Radiocarbon dates range from 23,240 YBP at 1750-m elevation to 140 YBP at 2600 m. Interestingly, none of the charcoal samples from 2600 m are older than 170 yr, which suggests that forests near the continental divide are relatively young replacement stands that have re-established since the most recent localized volcanic eruption on Volcán Barva. We propose that these old-growth forests have been disturbed infrequently but multiple times as a consequence of anthropogenic and natural fires. RESUMEN El carbón es un indicador de los fuegos Holocenos así como una huella paleoecológica del uso de las tierras precolombinas en bosques neotropicales. Para documentar la historia de fuegos en los bosques, examinamos modelos de carbón en la tierra en bosques primarios continuos a lo largo de un transecto en altitud en zonas de vida forestal desde el nivel del mar hasta la División Continental en la vertiente atlántica de Costa Rica. En diez elevaciones tomamos muestras de parcelas de una hectárea, donde se usaron dieciséis cilíndricas de acero por hectárea para recoger muestras de suelo a 1.5 metros de profundidad. Descubrimos carbón en suelos en cada elevación, con un rango de masa seca total desde los 3.18 g/m2 a 2000 metros de altura hasta un máximo de 102.7 g/m2 a 300 metros de altura. El carbón abunda más en las zonas más lluviosas (60,500 metros) y menos en elevaciones montañosas (>1000 metros) donde hay menos precipitación. Entre los 30 a los 90 centímetros de profundidad en la tierra, el carbón está presente consistentemente y cada parcela de una hectárea tiene evidencia de carbón de incendios múltiples. Fechas de 14C van desde los 23,240 años a.P. a 1750 metros de elevación hasta los 140 años a.P. a 2600 metros. De modo interesante, ninguna de las muestras de carbón a partir de los 2600 metros de altura tiene más de 170 años, lo que sugiere que los bosques cerca de la División Continental son árboles relativamente jóvenes que se han reestablecido después de las erupciones volcánicas confinadas del Volcán Barva. Pensamos que estos bosques primarios han sido disturbados en muchas ocasiones pero en un largo periodo de tiempo como consecuencia de fuegos antropogénicos y naturales. [source] Pleistocene Plant Fossils in and near La Selva Biological Station, Costa Rica1BIOTROPICA, Issue 3 2003Sally P. Horn ABSTRACT Radiocarbon dating and 40Ar/39Ar analysis of overlying tephra indicate that plant fossil assemblages exposed by stream erosion and well construction in and near La Selva Biological Station in eastern lowland Costa Rica are Pleistocene in age. We identified plant taxa based on wood, leaves, fruits, seeds, pollen, and spores examined from three sites at ca 30 m elevation. Extrapolating from modern ranges and surface temperature lapse rates suggests paleotemperatures 2.5,3.1°C cooler than at present RESUMEN Dataciones radiocarbónicas y análisis de argon (40Ar/39Ar) de la tefra sobrepuesta indican una edad Pleistocénica para las asociaciones de plantas fósiles expuestas por erosión fluvial y por la construcción de un pozo dentro y cerca de la Estación Biológica La Selva en la bajura oriental de Costa Rica. Se identificaron los táxones vegetales con base en madera, hojas, frutas, semillas, polen, y esporas de tres sitios ubicados a unos 30 m sobre el nivel de mar. Los resultados, basados en la extrapolación de los ámbitos geográficos y del gradiente vertical de la temperatura superficial modernos, sugiere paleotemperaturas 2.5,3.1°C mas frescas que en el presente. [source] |