M Concentrations (m + concentration)

Distribution by Scientific Domains


Selected Abstracts


Determination of iodide in samples with complex matrices by hyphenation of capillary isotachophoresis and zone electrophoresis

ELECTROPHORESIS, Issue 20 2007
Pavla Pant
Abstract A method has been developed for the determination of iodide in mineral water, seawater, cooking salt, serum, and urine based on hyphenation of capillary ITP and zone electrophoresis. A commercially available instrumentation for capillary ITP with column-switching system was used. ITP served for removal of chloride present in the analyzed samples in a ratio of 106,107:1 to iodide, zone electrophoresis was used for evaluation. Isotachophoretic separation proceeded in a capillary made of fluorinated ethylene,propylene copolymer of 0.8,mm id and 90,mm total length to the bifurcation point filled with a leading electrolyte (LE) composed of 8,mM HCl,+,16,mM ,-alanine (,-Ala),+,10% PVP,+,2.86,mM N2H4×2HCl, pH,3.2; and a terminating electrolyte composed of 8,mM H3PO4,+,16,mM ,-Ala,+,10% PVP,+,5,mM N2H4, pH,3.85 for all the matrices except seawater. For ITP of seawater the LE consisted of 50,mM HCl,+,100,mM ,-Ala,+,10% PVP +,2.86,mM N2H4×2HCl, pH,3.52. Distance of conductivity detector from the injection point and bifurcation point was 52 and 38,mm, respectively. Zone electrophoresis was performed in a capillary made of fused silica of 0.3,mm id and 160,mm total length filled with LE from isotachophoretic step. LODs reached for all matrices were 2,3×10,8,M concentration (2.5,4,,g/L) enabled monitoring of iodide in all analyzed samples with RSD 0.4,9.3%. Estimated concentrations of iodide in individual matrices were 10,6,10,8,M. [source]


JNK phosphorylates the HSF1 transcriptional activation domain: Role of JNK in the regulation of the heat shock response

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2001
Jeonghyeon Park
Abstract The role of c-Jun NH2 -terminal kinase (JNK) signaling cascade in the stress-inducible phosphorylation of heat shock factor 1 (HSF1) was investigated using known agonists and antagonists of JNK. We showed that treatment of HeLa cells with MG132, a proteasome inhibitor and known JNK activator, caused the transcriptional activation domain of HSF1 to be targeted and phosphorylated by JNK2 in vivo. Dose-response and time course studies of the effects of heat shock and anisomycin treatment showed a close correlation of the activation of JNK and hyperphosphorylation of HSF1. SB203580 inhibited JNK at the 100 ,M concentration and significantly reduced the amount of hyperphosphorylated HSF1 upon heat shock or anisomycin treatment. SB203580 and dominant-negative JNK suppress hsp70 promoter-driven reporter gene expression selectively at 45°C but not at 42°C heat stress, suggesting that JNK would be preferentially associated with the protective heat shock response against severe heat stress. The possibility that JNK-mediated phosphorylation of HSF1 may selectively stabilize the HSF1 protein and confers protection to cells under conditions of severe stress is discussed. J. Cell. Biochem. 82: 326,338, 2001. © 2001 Wiley-Liss, Inc. [source]


Effect of Sodium Chloride, Acetic Acid, and Enzymes on Carotene Extraction in Carrots (Daucus carota L.)

JOURNAL OF FOOD SCIENCE, Issue 2 2005
Maria E. Jaramillo-Flores
ABSTRACT: Carrot root cores were cut off longitudinally and treated with NaCl (0.6 and 1.2 M) and/or acetic acid (1.33%, 2.67%, and 4%) solutions. The extractability of the carotenes was estimated. Similarly, carrot cores were also treated with some degrading enzymes (carbohydrases, lipases, and proteases) alone or in combination to study the effect of the tissue rupture or the hydrolysis of possible complexes or interactions between carotenes and other components on the carotene extractability. The results showed that acetic acid increased the extractability of ,- and , carotenes up to 99.8% and 94.6%, respectively, at a 4% acid concentration compared with the samples without any treatment. This increase was directly proportional to the acid concentration. An increase in extractability was also observed for NaCl, although the increases were not as high as in the previous case with values of 49% and 41.4% for ,- and ,-carotenes respectively at a 0.6 M concentration. The study of microstructural changes and extractability revealed that the enzymatic treatments could have broken some carotene complexes and interactions and altered the carbohydrate matrix structure, increasing to a certain extent the extractability of carotenes. It can be concluded then that pickling with 4% acetic acid is a good method to increase the extractability of ,- and ,-carotenes. [source]


Benzydamine inhibits monocyte migration and MAPK activation induced by chemotactic agonists

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2003
Elena Riboldi
The present study was aimed to investigate the effect of benzydamine, an anti-inflammatory drug devoid of activity on arachidonic acid metabolism, on monocyte chemotaxis and to define the possible biochemical correlates of activity. Benzydamine inhibited monocyte chemotaxis in response to three classes of chemoattractants: the prototypic CC-chemokine CCL2 (MCP-1), the microbial product fMLP and the complement cascade component C5a. The effect was dose-dependent with IC50's of 100, 50 and 45 ,M for MCP-1/CCL2, fMLP and C5a, respectively. At the dose of 100 ,M, the effect resulted in a 50±10% inhibition of MCP-1/CCL2-induced chemotaxis and 53±6 and 54±5% inhibitions of chemotaxis in response of fMLP and C5a, respectively (n=3). Receptor expression as well as calcium fluxes in response to chemoattractants were not affected by benzydamine. Benzydamine strongly inhibited chemoattractant-induced activation of the mitogen-activated protein kinase (MAPK) ERK1/2, and of its upstream activator kinase MEK1/2. ERK1/12 activation in response to chemoattractants was 89,98% inhibited by a 100 ,M concentration of benzydamine with an IC50 of 30 ,M. Under the same experimental conditions, pretreatment with 100 ,M benzydamine caused a 75,89% inhibition of p38 activation (IC50 25 ,M). These results indicate that the anti-inflammatory activity of benzydamine is exerted at multiple levels, including monocyte migration to chemotactic factors associated to a blockage of ERK and p38 MAPK pathways. British Journal of Pharmacology (2003) 140, 377,383. doi:10.1038/sj.bjp.0705428 [source]


Reversing Effect of Agosterol A, a Spongean Sterol Acetate, on Multidrug Resistance in Human Carcinoma Cells

CANCER SCIENCE, Issue 8 2001
Shunji Aoki
The effect of agosterol A, a novel polyhydroxylated sterol acetate isolated from a marine sponge, on P-glycoprotein (P-gp)-mediated multidrug-resistant cells (KB-C2) and the multidrug resistance associated protein (MRPl)-mediated multidrug-resistant cells (KB-CV60) was examined. Agosterol A reversed the resistance to colchicine in KB-C2 cells and also the resistance to vincristine in KB-CV60 cells at 3 to 10 ,M concentration. Agosterol A at 3 ,M increased the vincristine concentration in both KB-C2 cells and KB-CV60 cells to the level in parental KB-3-1 cells. Agosterol A also decreased the efflux of vincristine from both KB-C2 cells and KB-CV60 cells to the level seen in KB-3-1 cells. Agosterol A inhibited the [3H]azidopine-photolabeling of P-gp and also inhibited the uptake of [3H]S-(2,4-dinitrophenyl)glutathione (DNP-SG) in inside-out membrane vesicles prepared from KB-CV60 cells. We conclude that agosterol A directly inhibited drug efflux through P-gp and/or MRP1. [source]


Diphenyl diselenide protects against hematological and immunological alterations induced by mercury in mice

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 5 2008
Ricardo Brandão
Abstract Mercury is a heavy metal that can cause a variety of toxic effects on the organism, such as hematological and immunological alterations. In the present investigation, deleterious effects of mercury-intoxication in mice and a possible protective effect of diphenyl diselenide (PhSe)2 were studied. Male adult Swiss albino mice received daily a pretreatment with (PhSe)2 (15.6 mg/kg, orally) for 1 week. After this week, mice received daily mercuric chloride (1 mg/kg, subcutaneously) for 2 weeks. A number of hematological (erythrocytes, leukocytes, platelets, hemoglobin, hematocrit, reticulocytes, and leukocytes differential) and immunological (immunoglobulin G and M plasma concentration) parameters were evaluated. Another biomarker of tissue damage, lactate dehydrogenase (LDH), was also determined. The results demonstrated that mercury exposure caused a reduction in the erythrocyte, hematocrit, hemoglobin, leukocyte, and platelet counts and an increase in the reticulocyte percentages. (PhSe)2 was effective in protecting against the reduction in hematocrit, hemoglobin, and leukocyte levels. (PhSe)2 ameliorated reticulocyte percentages increased by mercury. However, (PhSe)2 was partially effective in preventing against the decrease in erythrocyte and platelet counts. Immunoglobulin G and M concentrations and LDH activity were increased by mercury exposure, and (PhSe)2 was effective in protecting against these effects. In conclusion, (PhSe)2 was effective in protecting against hematological and immunological alterations induced by mercury in mice. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:311,319, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20242 [source]


Tryptophan Missense Mutation in the Ligand-Binding Domain of the Vitamin D Receptor Causes Severe Resistance to 1,25-Dihydroxyvitamin D,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2002
T. M. Nguyen Ph.D.
Abstract In this study, two related young children, brother and sister, exhibited severe vitamin D-resistant rickets without alopecia. Sequence analysis of the total vitamin D receptor (VDR) cDNA from skin fibroblasts revealed a substitution of the unique tryptophan of the VDR by arginine at amino acid 286 (W286R). Cultured skin fibroblasts of the two patients expressed normal-size VDR protein (immunocytochemistry and Western blotting) and normal length VDR mRNA (Northern blotting). But, these fibroblasts, as well as COS-7 cells transfected with the W286R mutant, failed to bind 3H 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The tryptophan substitution did not affect VDR trafficking toward the nucleus but abolished the 24-hydroxylase gene response to 1,25(OH)2D3, even at 10,6 M concentrations. In conclusion, this case report of a new family with hereditary vitamin D- resistant rickets (HVDRR) emphasizes the crucial role of the VDR tryptophan for ligand binding and for transactivation of 1,25(OH)2D3 target genes. It clearly shows the clinical significance of this VDR amino acid for calcium homeostasis and bone mineralization. This observation suggests further that the presence of a stable VDR-bound ligand may not be obligatory for normal hair follicle development. [source]


Effect of a combination of extract from several plants on Cell-mediated and humoral immunity of patients with advanced ovarian cancer

PHYTOTHERAPY RESEARCH, Issue 5 2006
N. Kormosh
Abstract The influence of a plant preparation AdMax (Nulab Inc., Clearwater, FL, USA) on immunity in ovarian cancer patients was studied. The preparation is a combination of dried ethanol/water extracts from roots of Leuzea carthamoides, Rhodiola rosea, Eleutherococcus senticosus and fruits of Schizandra chinensis. Twenty eight patients with stage III,IV epithelial ovarian cancer were treated once with 75 mg/m2 cisplatin and 600 mg/m2 cyclophosphamide. Peripheral blood was collected 4 weeks after the chemotherapy. Subclasses of T, B and NK lymphocytes were tested for in the blood samples: CD3, CD4, CD5, CD7, CD8, CD11B, CD16, CD20, CD25, CD38, CD45RA, CD50, CD71 and CD95. Immunoglobulin G, A and M concentrations were also determined. Changes were observed in the following T cell subclasses: CD3, CD4, CD5 and CD8. In patients who took AdMax (270 mg a day) for 4 weeks following the chemotherapy, the mean numbers of the four T cell subclasses were increased in comparison with the mean numbers of the T cell subclasses in patients who did not take AdMax. In patients who took AdMax, the mean amounts of IgG and IgM were also increased. The obtained results suggest that the combination of extracts from adaptogenic plants may boost the suppressed immunity in ovarian cancer patients who are subject to chemotherapy. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Removal of the N-terminal hexapeptide from human ,2-microglobulin facilitates protein aggregation and fibril formation

PROTEIN SCIENCE, Issue 5 2000
G. Esposito
Abstract The solution structure and stability of N-terminally truncated ,2-microglobulin (,N6,2-m), the major modification in ex vivo fibrils, have been investigated by a variety of biophysical techniques. The results show that ,N6,2-m has a free energy of stabilization that is reduced by 2.5 kcal/mol compared to the intact protein. Hydrogen exchange of a mixture of the truncated and full-length proteins at ,M concentrations at pH 6.5 monitored by electrospray mass spectrometry reveals that ,N6,2-m is significantly less protected than its wild-type counterpart. Analysis of ,N6,2-m by NMR shows that this loss of protection occurs in , strands I, III, and part of II. At mM concentration gel filtration analysis shows that ,N6,2-m forms a series of oligomers, including trimers and tetramers, and NMR analysis indicates that strand V is involved in intermolecular interactions that stabilize this association. The truncated species of ,2-microglobulin was found to have a higher tendency to self-associate than the intact molecule, and unlike wild-type protein, is able to form amyloid fibrils at physiological pH. Limited proteolysis experiments and analysis by mass spectrometry support the conformational modifications identified by NMR and suggest that ,N6,2-m could be a key intermediate of a proteolytic pathway of ,2-microglobulin. Overall, the data suggest that removal of the six residues from the N-terminus of ,2-microglobulin has a major effect on the stability of the overall fold. Part of the tertiary structure is preserved substantially by the disulfide bridge between Cys25 and Cys80, but the pairing between ,-strands far removed from this constrain is greatly perturbed. [source]


Effect of corazonin and crustacean cardioactive peptide on heartbeat in the adult American cockroach (Periplaneta americana)

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2006
Karel Sláma
Abstract Changes in the frequency of cardiac pulsations have been monitored in the decapitated body of adult P. americana before and 5 h after the injections of [Arg7]-corazonin and CCAP, using newly invented touch-free, noninvasive optocardiographic methods. Relatively large dosages of these peptides (10,6 M concentrations in the body) had no effect on the rate of the heartbeat beyond the Ringer control limits. It has been concluded, therefore, that Corazonin and CCAP, which are currently cited in the literature as "the most potent cardiostimulating peptides" in insects, have no effect on the physiological regulation of cardiac functions in the living body. Arch Insect Biochem Physiol 62:91,103, 2006. © 2006 Wiley-Liss, Inc. [source]


Membrane Permeabilization of a Mammalian Neuroendocrine Cell Type (PC12) by the Channel-Forming Peptides Zervamicin, Alamethicin, and Gramicidin

CHEMISTRY & BIODIVERSITY, Issue 6 2007

Abstract Zervamicin IIB (ZER) is a 16-mer peptaibol that produces voltage-dependent conductances in artificial membranes, a property considered responsible for its antimicrobial activity to mainly Gram -positive microorganisms. In addition, ZER appears to inhibit the locomotor activity of the mouse (see elsewhere in this Issue), probably by affecting the brain. To examine whether the electrophysiological properties of the neuronal cells of the central neural system might be possibly influenced by the pore forming ZER, the present study was undertaken as a first attempt to unravel the molecular mechanism of this biological activity. To this end, membrane permeabilization of the neuron-like rat pheochromocytoma cell (PC12) by the channel-forming ZER was studied with the whole-cell patch-clamp technique, and compared with the permeabilizations of the well-known voltage-gated peptaibol alamethicin F50/5 (ALA) and the cation channel-forming peptide-antibiotic gramicidin D (GRAM). While 1,,M GRAM addition to PC12 cells kept at a membrane potential Vm=0,mV causes an undelayed gradual increase of a leak conductance with a negative reversal potential of ca. ,24,mV, ZER and ALA are ineffective at that concentration and potential. However, if ZER and ALA are added in 5,10,,M concentrations while Vm is kept at ,60,mV, they cause a sudden and strong permeabilization of the PC12 cell membrane after a delay of 1,2,min, usually leading to disintegrating morphology changes of the patched cell but not of the surrounding cells of the culture at that time scale. The zero reversal potential of the established conductance is consistent with the known aselectivity of the channels formed. This sudden permeabilization does not occur within 10,20,min at Vm=0,mV, in accordance with the known voltage dependency of ZER and ALA channel formation in artificial lipid membranes. The permeabilizing action of these peptaibols on the culture as a whole is further supported by K+ -release measurements from a PC12 suspension with a K+ -selective electrode. Further analysis suggested that the permeabilizing action is associated with extra- or intracellular calcium effects, because barium inhibited the permeabilizing effects of ZER and ALA. We conclude, for the membrane of the mammalian neuron-like PC12 cell, that the permeabilizing effects of the peptides ZER and ALA are different from those of GRAM, consistent with earlier studies of these peptides in other (artificial) membrane systems. They are increased by cis -positive membrane potentials in the physiological range and may include calcium entry into the PC12 cell. [source]


C3 -symmetrical self-assembled structures investigated by vibrational circular dichroism,

CHIRALITY, Issue 9 2008
Maarten M. J. Smulders
Abstract We demonstrate by using vibrational circular dichroism (VCD) spectroscopy that it is possible to investigate the chirality of a supramolecular polymeric system in relatively dilute solutions. Chiral C3 -symmetrical discotic molecules, based on a trialkylbenzene-1,3,5-carboxamide, form supramolecular columnar stacks with a right-handed helical structure in solution due to intermolecular hydrogen bonds. The handedness of the supramolecular chirality is determined using electronic spectroscopy measurements. Under dilute conditions (at 10,3 M concentrations), it was also possible to probe the hydrogen bonding moieties with IR and VCD spectroscopy on these self-assembled structures. In combination with density functional theory (DFT) calculations, we could verify the preference for a right-handed chirality in the helical stacks and the nonplanar orientation of the carbonyl groups present in the molecule. This chiral arrangement is in agreement with the structure determined for a related benzene-1,3,5-tricarboxamide by X-ray diffraction. Chirality, 2008. © 2008 Wiley-Liss, Inc. [source]


Effect of Taurine and Melatonin in the Culture Medium on Buffalo In Vitro Embryo Development

REPRODUCTION IN DOMESTIC ANIMALS, Issue 1 2009
BM Manjunatha
Contents This study was carried out to investigate the effect of supplementing culture medium with different concentrations of taurine and melatonin, on buffalo oocyte in vitro meiotic maturation and embryo development. In experiment 1, oocytes were matured in vitro and the cleaved embryos were cultured in the same following seven culture medium; (i) control (TCM 199 + 10% SS); (ii) control + 0.5 mm taurine; (iii) control + 1 mm taurine; (iv) control + 3 mm taurine; (v) control + 5 ,m melatonin; (vi) control + 10 ,m melatonin and (vii) control + 50 ,m melatonin. In experiment 2, based on the results of experiment 1, to examine the synergistic effect of antioxidants, the oocytes were matured in culture medium (TCM199 + 10% SS), supplemented with both taurine at 1 mm and melatonin at 10 ,m concentration and the cleaved embryos were cultured in the same medium. Supplementation of taurine at 1 mm concentration in the culture medium resulted in a higher (p < 0.05) transferable embryo (TE) yield when compared with control (20.6% vs 14.1%). Supplementation of melatonin at 10 and 50 ,m concentration in the culture medium resulted in a higher (p < 0.05) meiotic maturation rate (90.3% and 88.8% respectively) and TE yield (28.4% and 27.2% respectively), than the other treatments. In experiment 2, the TE yield did not improve by supplementing the culture medium with both taurine and melatonin, when compared with melatonin alone. In conclusion, the results of this study demonstrated that, enriching the culture medium with taurine and melatonin, improves in vitro embryo production efficiency in buffaloes. In particular, a high TE yield was obtained by enriching the culture medium with 10 ,m melatonin. [source]


Effect of dexamethasone on neutrophil metabolism

CELL BIOCHEMISTRY AND FUNCTION, Issue 2 2003
Carolina Garcia
Abstract The effect of dexamethasone on glucose and glutamine metabolism was investigated. The consumption and oxidation of glucose and glutamine, and the production of glutamate and lactate were determined in neutrophils cultured for 3,h in the presence of dexamethasone. The activities and expression of glucose-6-phosphate dehydrogenase (G6PDH) and phosphate-dependent glutaminase were also determined under the same conditions. Addition of dexamethasone to the culture medium caused a significant increase of glucose consumption at 0.5,,m (123.9%) and 1.0,,m (78.3%) concentrations. In spite of this, however, glucose oxidation remained unchanged. The glucocorticoid did not change glutamine consumption but caused a significant increase of glutamate production and did not alter glutamine oxidation. Dexamethasone-treated neutrophils had a significant decrease of G6PDH activity and expression in particular at 1.0,,m concentration. Phosphate- dependent glutaminase activity was also decreased (about 34%) by dexamethasone treatment. A similar effect was observed on glutaminase expression as indicated by RT-PCR analysis. Thus, the effect of dexamethasone on neutrophil metabolism was particularly noticeable with respect to G6PDH and glutaminase activities where a decrease in the respective mRNA levels was demonstrated. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Effects of Alendronate on A Disintegrin and Metalloproteinase with Thrombospondin Motifs Expression in the Developing Epiphyseal Cartilage in Rats

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2009
M. S. Kim
Summary A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) have been reported to play a role in the degradation of aggrecan, a major component of cartilage. This study was performed to examine the effects of alendronate on the expression of ADAMTS in developing femoral epiphyseal cartilage. Primary cultured chondrocytes from this cartilage were treated with alendronate in vitro and postnatal day 1 rats were injected subcutaneously with alendronate (1 mg/kg) every second day in vivo. The number of cultured chondrocytes and their aggrecan mRNA levels were unaffected by the alendronate treatment at 10,6 to 10,4 m concentrations. The mRNA levels of ADAMTS-1, -2 and -9 in chondrocytes were also unaffected. However, the levels of ADAMTS-5 and -4 were reduced significantly by the same treatment. The thickness of the proliferating chondrocyte layers and the aggrecan mRNA levels in the epiphysis were unaffected by the alendronate treatment in vivo. However, the hypertrophied chondrocyte layers became significantly thicker, and the size of the secondary ossification centre was reduced significantly by the same treatment (P < 0.05). Both ADAMTS-4 and -5 mRNA expressions were also reduced significantly in vivo. The immunoreactivity against ADAMTS-4 was seen in hypertrophied chondrocytes and reduced significantly by the alendronate treatment. These results suggested that alendronate can inhibit the degradation of aggrecan in the articular cartilage by downregulating the expression of matrix enzymes such as ADAMTS-4 and -5. [source]