Lymphocyte Recruitment (lymphocyte + recruitment)

Distribution by Scientific Domains


Selected Abstracts


The role of MAPK in governing lymphocyte adhesion to and migration across the microvasculature in inflammatory bowel disease

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2009
Franco Scaldaferri
Abstract Lymphocyte recruitment is a key pathogenic event in inflammatory bowel disease (IBD). Adhesion of T cells to human intestinal microvascular endothelial cells (HIMEC) is mediated by ICAM-1, VCAM-1 and fractalkine (FKN), but the signaling molecules that orchestrate this process have yet to be identified. Because MAPK play an important role in the response of many cell types to pro-inflammatory stimuli, we assessed the functional role of p38 MAPK, p42/44 MAPK and JNK in the regulation of lymphocyte adhesion to and chemotaxis across the microvasculature in IBD. We found that the MAPK were phosphorylated in the bowel microvasculature and human intestinal fibroblasts of patients with IBD but not of healthy individuals. Stimulation of HIMEC with TNF- , triggered phosphorylation of the MAPK, and up-regulation of VCAM-1, FKN and ICAM-1. Blockade of p38 decreased the expression of all MAPK by 50% (p<0.01), whereas inhibition of p42/44 decreased the expression of ICAM-1 and FKN by 50% (p<0.01). Treatment of human intestinal fibroblasts with TNF- , elicited production of IL-8 and MCP-1, which was reduced (p<0.05) by blockade of p38 and p42/44. Finally, blockade of p38 and p42/44 reduced lymphocyte adhesion to (p<0.05) and transmigration across (p<0.05) HIMEC monolayers. These findings suggest a critical role for MAPK in governing lymphocyte influx into the gut in IBD patients, and their blockade may offer a molecular target for blockade of leukocyte recruitment to the intestine. [source]


GlcNAc6ST-1-mediated decoration of MAdCAM-1 protein with L-selectin ligand carbohydrates directs disease activity of ulcerative colitis

INFLAMMATORY BOWEL DISEASES, Issue 5 2009
Motohiro Kobayashi MD
Abstract Background: A diffuse lymphocyte infiltrate is 1 of the characteristic features of ulcerative colitis (UC). Such lymphocyte recruitment requires lymphocyte rolling mediated by L-selectin ligand carbohydrates (6-sulfo sialyl Lewis X-capped O -glycans) and/or mucosal addressin cell adhesion molecule 1 (MAdCAM-1) expressed on high endothelial venule (HEV)-like vessels. The present study was undertaken to elucidate the role of MAdCAM-1 posttranslationally modified ("decorated") with L-selectin ligand carbohydrates in UC pathogenesis and consequent clinical outcomes. Methods: Biopsy specimens composed of active and remission phases of UC as well as normal colonic mucosa were immunostained for CD34, MAdCAM-1, and MECA-79, and the immunostained sections were quantitatively analyzed. Reverse-transcriptase polymerase chain reaction (RT-PCR) was carried out to evaluate transcripts of MAdCAM-1 and N -acetylglucosamine-6- O -sulfotransferases (GlcNAc6STs). CHO and Lec2 cells transfected with CD34 and MAdCAM-1 together with enzymes involved in L-selectin ligand carbohydrate biosynthesis were analyzed by immunofluorescence, FACS, and Western blotting to characterize the biochemical properties of GlcNAc6STs. Results: The number of MAdCAM-1+ vessels was increased in UC, with no significant difference between active and remission phases. An increased ratio of MECA-79+ to MAdCAM-1+ vessels with preferential GlcNAc6ST-1 transcripts was observed in the active phase of UC compared to the remission phase. MAdCAM-1 protein was colocalized with L-selectin ligand carbohydrates at the luminal surface of HEV-like vessels in situ. GlcNAc6ST-1 preferentially utilizes MAdCAM-1 as a scaffold protein for GlcNAc-6- O -sulfation in L-selectin ligand carbohydrate biosynthesis. Conclusions: UC disease activity is not regulated by expression of MAdCAM-1 protein itself, but rather by GlcNAc6ST-1-mediated decoration of MAdCAM-1 protein with L-selectin ligand carbohydrates. (Inflamm Bowel Dis 2008) [source]


Quilty Effect Has the Features of Lymphoid Neogenesis and Shares CXCL13,CXCR5 Pathway With Recurrent Acute Cardiac Rejections

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2007
E. Di Carlo
Quilty effect (QE) is a frequent, yet enigmatic feature of cardiac allograft, since it is apparently devoid of clinical significance, though its association with acute (A) rejection (R) is strongly suspected. It was observed in 126/379 biopsies from 22 patients during the first posttransplant year. Most grade (G)2R biopsies displayed a concomitant QE. The following features typical of QE were identified: (a) focal angiogenesis and lymphangiogenesis associated with bFGF, VEGF-C and VEGF-A expression, (b) marked infiltrate of CD4+T and CD20+B followed by CD8+T lymphocytes arranged around PNAd+HEV-like vessels. Most QE appear as distinct B,T-cell-specific areas with lymphoid follicles sometimes endowed with germinal center-like structures containing VCAM-1+CD21+FDC and CD68+macrophages, which frequently expressed CXCL13. These cells were also found in mantle-like zones, where small lymphocytes expressed CXCR5, otherwise in the whole area of not clustered lymphoid aggregates. CXCL13 was also expressed, in association with CD20+B lymphocyte recruitment, in G2R biopsies obtained from patients with recurrent AR. QE has features of a tertiary lymphoid tissue suggesting an attempt, by the heart allograft, to mount a local response to a persistent alloantigen stimulation resulting in aberrant CXCL13 production, as also occurs in recurrent AR. CXCL13-CXCR5 emerge as a common molecular pathway for QE and recurrent episodes of AR. [source]


Endothelial Cell Calpain Activity Facilitates Lymphocyte Diapedesis

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2005
Amer M. Hussain
Lymphocyte infiltration of tissue is a cardinal feature of solid-organ allograft rejection. Vascular endothelial cells (EC) participate in lymphocyte recruitment through the display of adhesion molecules and chemokines to promote leukocyte extravasation. Moreover, EC reorganize the cytoskeleton and cytoskeleton-associated structures during leukocyte diapedesis. We examined the role of EC (Ca+2)i and the calcium-sensitive protease, calpain, during lymphocyte diapedesis through a human EC monolayer under physiologic shear stress in vitro. We observed that lymphocyte transendothelial migration (TEM) was inhibited by chelating EC cytosolic calcium, or depleting EC endoplasmic reticulum calcium stores by inhibition of the endoplasmic reticulum Ca ATPase. Further, inhibition of EC phospholiase C also decreased lymphocyte TEM. We determined that EC constitutively exhibit calpain activity, using fluorescence generation from a calpain substrate to report calpain activity in individual live cells. Moreover, EC adjacent to a transmigrating lymphocyte showed increased calpain activity. Further, lymphocyte TEM was inhibited by agents that block calpain activity. Inhibition of lymphocyte TEM occurs at the lumenal EC surface and correlates with impaired development of intercellular adhesion molecule 1 (ICAM-1)-rich docking structures by the EC. We conclude EC calcium and calpain activity facilitates lymphocyte TEM, and participates in the assembly of the docking structure. [source]


CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia,

ANNALS OF NEUROLOGY, Issue 4 2009
Sonia Berrih-Aknin PhD
Objective Myasthenia gravis (MG), a neuromuscular disease mediated by anti-acetylcholine receptor (AChR) autoantibodies, is associated with thymic hyperplasia characterized by ectopic germinal centers that contain pathogenic antibody-producing B cells. Our thymic transcriptome study demonstrated increased expression of CCL21, a recruiter of immune cells. Accordingly, we are investigating its implication in MG pathogenesis. Methods The expression of CCL21 and its CCR7 receptor was analyzed by enzyme-linked immunosorbent assay and fluorescence-activated cell sorting, respectively. Chemotaxis of T and B cells to CCL21 was measured by transwell assay. The nature of the thymic cells overexpressing CCL21 was investigated by immunochemistry and laser-capture microdissection combined with real-time PCR. Results We demonstrate that CCL21 is overexpressed specifically in hyperplastic MG thymuses, whereas there is no variation in CCR7 levels on blood cells. We show that although CCL21 attracts both human T and B cells, it acts more strongly on naive B cells. CCL21 overexpression is normalized in corticoid-treated MG patients, suggesting that targeting this chemokine could represent a new selective treatment, decreasing the abnormal peripheral lymphocyte recruitment. Moreover, we locate protein and messenger RNA overexpression of CCL21 to specific endothelial vessels. Investigation of the nature of these vessels demonstrated different angiogenic processes in MG thymuses: high endothelial venule angiogenesis and lymphangiogenesis. Unexpectedly, CCL21 overexpression originates from afferent lymphatic endothelial vessels. Interpretation We postulate that thymic overexpression of CCL21 on specialized lymphatic vessels results in abnormal peripheral lymphocyte recruitment, bringing naive B cells in contact with the inflammatory environment characteristic of MG thymuses, where they can be sensitized against AChR. Ann Neurol 2009;66:521,531 [source]