Home About us Contact | |||
Lymphocyte Reaction (lymphocyte + reaction)
Kinds of Lymphocyte Reaction Selected AbstractsRelB/p50 regulates CCL19 production, but fails to promote human DC maturationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2009Chiara Gasparini Abstract DC, when fully matured are the APC best able to activate naïve T cells. Recently, we demonstrated using adenoviruses overexpressing I,B, and proteosome inhibitors that NF-,B is involved in DC activation, but the role of the individual subunits is still not clear. We investigated the role of the NF-,B subunits RelB and p50 in human DC activation using adenoviral vectors expressing RelB or p50. Nuclear RelB, in the form of RelB/p50, was active only in DC infected with both viruses, this induced the production of the soluble homeostatic chemokine CCL19, but not other homeostatic chemokines, particularly in LPS-matured DC. However, RelB/p50 did not affect the expression of costimulatory and antigen-presenting molecules, and increased the allogeneic mixed lymphocyte reaction only in LPS-matured DC. This enhanced mixed lymphocyte reaction is most likely due to enhanced CCL19 production, which sustains the interaction between mature DC and naïve T cells. In conclusion, we demonstrated that RelB/p50 was active only in DC expressing both RelB and p50, and induced CCL19 production, but not DC maturation. [source] Hepatitis C virus,infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells,HEPATOLOGY, Issue 1 2008Takashi Ebihara Dendritic cell maturation critically modulates antiviral immune responses, and facilitates viral clearance. Hepatitis C virus (HCV) is characterized by its high predisposition to persistent infection. Here, we examined the immune response of human monocyte-derived dendritic cells (MoDCs) to the JFH1 strain of HCV, which can efficiently replicate in cell culture. However, neither HCV RNA replication nor antigen production was detected in MoDCs inoculated with JFH1. None of the indicators of HCV interacting with MoDCs we evaluated were affected, including expression of maturation markers (CD80, 83, 86), cytokines (interleukin-6 and interferon-beta), the mixed lymphocyte reaction, and natural killer (NK) cell cytotoxicity. Strikingly, MoDCs matured by phagocytosing extrinsically-infected vesicles containing HCV-derived double-stranded RNA (dsRNA). When MoDCs were cocultured with HCV-infected apoptotic Huh7.5.1 hepatic cells, there was increased CD86 expression and interleukin-6 and interferon-beta production in MoDCs, which were characterized by the potential to activate NK cells and induce CD4+ T cells into the T helper 1 type. Lipid raft-dependent phagocytosis of HCV-infected apoptotic vesicles containing dsRNA was indispensable to MoDC maturation. Colocalization of dsRNA with Toll-like receptor 3 (TLR3) in phagosomes suggested the importance of TLR3 signaling in the MoDC response against HCV. Conclusion: The JFH1 strain does not directly stimulate MoDCs to activate T cells and NK cells, but phagocytosing HCV-infected apoptotic cells and their interaction with the TLR3 pathway in MoDCs plays a critical role in MoDC maturation and reciprocal activation of T and NK cells. (HEPATOLOGY 2008.) [source] Human autologous mixed lymphocyte reaction as an in vitro model for autoreactivity to apoptotic antigensIMMUNOLOGY, Issue 3 2002Mohammad R. Amel Kashipaz Summary Recent studies have indicated that cells undergoing apoptosis are the source of autoantigens which drive autoimmune responses in systemic lupus erythematosus (SLE). It has been recognized for many years that in vitro stimulation of T cells with irradiated major histocompatibility complex (MHC) class II-bearing autologous cells results in T-cell proliferation with immunological specificity and memory, namely the autologous mixed lymphocyte reaction (AMLR). The nature of the major stimulants in the AMLR is still unclear. We investigated whether apoptotic fragments from irradiated cells act as antigenic stimulators for AMLR or nucleohistone-primed T cells. T-cell proliferation in the primary AMLR was significantly suppressed by the presence of a caspase inhibitor Z-Val-Ala-Asp-CH2F (Z-VAD.fmk), indicating that apoptotic antigens released from irradiated autologous feeder cells act as stimulators of AMLR T cells. This inhibitory effect of Z-VAD was not caused by toxic effects, because the T-cell response to the mitogen phytohaemagglutinin (PHA) was not inhibited by Z-VAD. A nucleohistone preparation was shown to contain antigens that are important in the AMLR, as culture with nucleohistone (but not with thyroglobulin or hen-egg lysozyme) primed T cells to respond with secondary kinetics in a subsequent AMLR that was also suppressed by Z-VAD. Our data provide evidence that the AMLR constitutes a model for the evaluation of cellular and molecular mechanisms that may be relevant to the pathogenesis of SLE and similar autoimmune diseases. [source] Partial tolerance of subcutaneously transplanted xenogeneic tumour cell graft by Fas-mediated immunosuppressionIMMUNOLOGY, Issue 1 2001Takahiro Sawada Summary Certain anti-Fas antibodies, such as RMF2, induce apoptosis of Fas-expressing cells. We applied the Fas/anti-Fas system to induce killing of Fas-expressing immunocytes with resultant immunosuppression. W7TM-1 tumour cells, a rat T-cell line, were inoculated subcutaneously in BALB/c mice and tumour growth was monitored in untreated mice and in mice treated with RMF2. Prior to treatment with RMF2, we examined the expression of Fas in isolated splenocytes and in tumour-infiltrating lymphocytes by flow cytometry and immunohistochemistry, respectively. There was a remarkable increase in Fas-positive lymphocytes, including natural killer (NK) cells, among splenocytes at day 5 after tumour cell inoculation. The number of Fas-positive infiltrating lymphocytes also increased markedly, from day 5 to day 10. We then examined whether RMF2 could induce apoptosis of Fas-positive activated lymphocytes isolated from the spleen at day 5 in vitro. Terminal deoxy (d) -UTP nick end labelling (TUNEL) and Annexin V staining methods showed apoptosis of isolated cells when incubated with RMF2, and typical apoptotic features were confirmed by 4,,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. Furthermore, suppression of cellular and humoral immunity was noted in RMF2-treated mice by mixed lymphocyte reaction and assay of serum levels of immunoglobulin G, respectively. Finally, treatment of animals with RMF2 daily from day 5 to day 9 could maintain the tumour size, while the tumour mass began to diminish in untreated mice immediately after reaching a maximum size. We confirmed the enhancing effects of long-term treatment with RMF2, through the induction of immunosuppression, on the growth of unvascularized xenogeneic tumour cell grafts. [source] Selected Stro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferationINTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 1 2009A. NASEF Summary Mesenchymal stem cells (MSCs) have an immunosuppressive effect and can inhibit the proliferation of alloreactive T cells in vitro and in vivo. Cotransplantation of MSCs and hematopoietic stem cells (HSCs) from HLA-identical siblings has been shown to reduce the incidence of acute graft- vs.-host disease. MSCs are heterogeneous and data on the inhibitory effects of different MSC subsets are lacking. The antigen Stro1 is a marker for a pure primitive MSC subset. We investigated whether Stro-1-enriched induce a more significant suppressive effect on lymphocytes in a mixed lymphocyte reaction (MLR), and whether this action is related to a specific gene expression profile in Stro-1-enriched compared to other MSCs. We demonstrated that the Stro-1-enriched population elicits a significantly more profound dose-dependent inhibition of lymphocyte proliferation in a MLR than MSCs. One thousand expanded Stro-1-enriched induced an inhibitory effect comparable to that of 10 times as many MSCs. Inhibition by Stro-1-enriched was more significant in contact-dependent cultures than in noncontact-dependant cultures at higher ratio. The Stro-1-enriched inhibitory effect in both culture types was linked to increased gene expression for soluble inhibitory factors such as interleukin-8 (IL-8), leukemia inhibitory factor (LIF), indoleamine oxidase (IDO), human leukocyte antigen-G (HLA-G), and vascular cell adhesion molecule (VCAM1). However, tumor growth factor-,1 (TGF-,) and IL-10 were only up-regulated in contact-dependant cultures. These results may support using a purified Stro-1-enriched population to augment the suppressive effect in allogeneic transplantation. [source] Additive Inhibition of Dendritic Cell Allostimulatory Capacity by Alcohol and Hepatitis C Is Not Restored by DC Maturation and Involves Abnormal IL-10 and IL-2 InductionALCOHOLISM, Issue 6 2003Angela Dolganiuc Background: Excessive alcohol use results in impaired immunity, and it is associated with increased incidence and progression of chronic hepatitis C virus (HCV) infection. Here we investigated the effects of HCV infection and alcohol on myeloid dendritic cells (DC) that are critical in antiviral immunity. Methods: Immature and mature DCs were generated from monocytes of chronic HCV infected patients (HCV-DC) and controls (N-DC) with IL-4 plus granulocyte-macrophage colony stimulating factor (GM-CSF) in the presence or absence of alcohol (25 mM). DC allostimulatory capacity was tested in mixed lymphocyte reaction (MLR) and cytokine production by ELISA. Results: Allostimulatory capacity of HCV-DCs was reduced compared to N-DCs and it was further inhibited by alcohol treatment (p < 0.01). MLR was also decreased with alcohol-treated N-DCs. DC phenotypic markers and apoptosis were comparable between HCV-DCs and N-DCs irrespective of alcohol treatment. However, HCV-DCs and alcohol-treated N-DCs exhibited elevated IL-10 and reduced IL-12 production. Reduced MLR with HCV-DCs and its further inhibition by alcohol coexisted with decreasing IL-2 levels (p < 0.017). DC maturation partially improved but failed to fully restore the reduced allostimulatory function of either alcohol-treated or alcohol-naïve HCV-DCs (p < 0.018). Conclusions: Alcohol and HCV independently and together inhibit DC allostimulatory capacity, increase IL-10, reduce IL-12 and IL-2 production that cannot be normalized by DC maturation. HCV and alcohol interact to modulate innate and adaptive immune responses via dendritic cells. [source] Phenotypic and functional characterization of mature dendritic cells from pediatric cancer patientsPEDIATRIC BLOOD & CANCER, Issue 7 2007Joannes F.M. Jacobs MD Abstract Background Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system. Clinical trials have demonstrated that mature DCs loaded with tumor-associated antigens can induce tumor-specific immune responses. Theoretically, pediatric patients are excellent candidates for immunotherapy since their immune system is more potent compared to adults. We studied whether sufficient amounts of mature monocyte-derived DCs can be cultured from peripheral blood of pediatric cancer patients. Procedure DCs from 15 pediatric patients with an untreated primary tumor were cultured from monocytes and matured with clinical grade cytokines. Phenotype and function were tested with flow cytometry, mixed lymphocyte reaction (MLR), and an in vitro migration assay. DCs of children with a solid tumor were compared with monocyte-derived DCs from age-related non-malignant controls. Results Ex vivo-generated monocyte-derived DCs from pediatric patients can be generated in numbers sufficient for DC vaccination trials. Upon cytokine stimulation the DCs highly upregulate the expression of the maturation markers CD80, CD83, and CD86. The mature DCs are six times more potent in inducing T cell proliferation compared to immature DCs. Furthermore, mature DCs, but not immature DCs, express the chemokine receptor CCR7 and have the capacity to migrate in vitro. Conclusions These data indicate that mature DCs can be generated ex vivo to further optimize DC-vaccination trials in pediatric cancer patients. Pediatr Blood Cancer 2007;49:924,927. © 2007 Wiley-Liss, Inc. [source] Immunoregulatory Activity, Biochemistry, and Phylogeny of Ovine Uterine SerpinAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 5 2001MORGAN R. PELTIER PROBLEM: During pregnancy, the endometrium of the ewe secretes a progesterone-induced member of the serpin superfamily of serine proteinase inhibitors called ovine uterine serpin (OvUS) that has immunosuppressive properties. METHOD: Review of the literature. RESULTS AND CONCLUSIONS: OvUS inhibits a wide variety of immune responses, including mixed lymphocyte reaction, mitogen-stimulated lymphocyte proliferation, and T cell-dependent antibody production. Recent data have suggested that OvUS functions by inhibiting protein kinase C and interleukin-2-mediated events. OvUS and similar genes present in cattle and pigs diverged from other serpins prior to the divergence of artiodactyls. Since this time, the serpins have apparently undergone adaptive evolution that has led to a conformational state and biological functions distinct from prototypical serpins. Thus, it is likely that these proteins have an important role in the reproductive biology of Artiodactyla. Several lines of evidence suggest that, in sheep, OvUS functions to mediate the immunosuppressive effects of progesterone and prevent immunological rejection of the fetal allograft. [source] Endotoxin-Induced Myeloid-Derived Suppressor Cells Inhibit Alloimmune Responses via Heme Oxygenase-1AMERICAN JOURNAL OF TRANSPLANTATION, Issue 9 2009V. De Wilde Inflammation and cancer are associated with impairment of T-cell responses by a heterogeneous population of myeloid-derived suppressor cells (MDSCs) coexpressing CD11b and GR-1 antigens. MDSCs have been recently implicated in costimulation blockade-induced transplantation tolerance in rats, which was under the control of inducible NO synthase (iNOS). Herein, we describe CD11b+GR-1+MDSC-compatible cells appearing after repetitive injections of lipopolysaccharide (LPS) using a unique mechanism of suppression. These cells suppressed T-cell proliferation and Th1 and Th2 cytokine production in both mixed lymphocyte reaction and polyclonal stimulation assays. Transfer of CD11b+ cells from LPS-treated mice in untreated recipients significantly prolonged skin allograft survival. They produced large amounts of IL-10 and expressed heme oxygenase-1 (HO-1), a stress-responsive enzyme endowed with immunoregulatory and cytoprotective properties not previously associated with MDSC activity. HO-1 inhibition by the specific inhibitor, SnPP, completely abolished T-cell suppression and IL-10 production. In contrast, neither iNOS nor arginase 1 inhibition did affect suppression. Importantly, HO-1 inhibition before CD11b+ cell transfer prevented the delay of allograft rejection revealing a new MDSC-associated suppressor mechanism relevant for transplantation. [source] Induction of Human T-Cell Tolerance to Pig Xenoantigens via Thymus Transplantation in Mice with an Established Human Immune SystemAMERICAN JOURNAL OF TRANSPLANTATION, Issue 6 2009K. Habiro Thymus xenotransplantation has been shown to induce tolerance to porcine xenografts in mice and to permit survival of ,1,3Gal-transferase knockout porcine kidney xenografts for months in nonhuman primates. We evaluated the ability of porcine thymus xenotransplantation to induce human T-cell tolerance using a humanized mouse (hu-mouse) model, where a human immune system is preestablished by implantation of fetal human thymus tissue under the kidney capsule and intravenous injection of CD34+ hematopoietic stem/progenitor cells. Human T-cell depletion with an anti-CD2 mAb following surgical removal of human thymic grafts prevented the initial rejection of porcine thymic xenografts in hu-mice. In these hu-mice, porcine thymic grafts were capable of supporting human thymopoiesis and T-cell development, and inducing human T-cell tolerance to porcine xenoantigens. Human T cells from these mice responded strongly to third-party pig, but not to the thymic donor swine leukocyte antigen (SLA)-matched pig stimulators in a mixed lymphocyte reaction (MLR) assay. Anti-pig xenoreactive antibodies declined in these hu-mice, whereas antibody levels increased in nontolerant animals that rejected porcine thymus grafts. These data show that porcine thymic xenotransplantation can induce donor-specific tolerance in immunocompetent hu-mice, supporting this approach for tolerance induction in clinical xenotransplantation. [source] Ex vivo Inhibition of NF-,B Signaling in Alloreactive T-cells Prevents Graft-Versus-Host DiseaseAMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2009M. J. O'Shaughnessy The ex vivo induction of alloantigen-specific hyporesponsiveness by costimulatory pathway blockade or exposure to immunoregulatory cytokines has been shown to inhibit proliferation, IL-2 production, and the graft-versus-host disease (GVHD) capacity of adoptively transferred T-cells. We hypothesized that inhibition of the intracellular NF-,B pathway in alloreactive T-cells, which is critical for T-cell activation events including IL-2 transcription, could lead to alloantigen hyporesponsiveness and loss of GVHD capacity. We demonstrate that treatment of mixed lymphocyte reaction (MLR) cultures with PS1145, a potent inhibitor of NF-,B activation, can induce T-cell hyporesponsiveness to alloantigen in primary and secondary responses while preserving in vitro responses to potent mitogenic stimulation. GVHD lethality in recipients of ex vivo PS1145-treated cells was profoundly inhibited. Parking of control or PS1145-treated MLR cells in syngeneic Rag,/, recipients resulted in intact contact hypersensitivity (CHS) responses. However, GVHD lethality capacity also was restored, suggesting that lymphopenic expansion uncoupled alloantigen hyporesponsiveness. These results indicate that the NF-,B pathway is a critical regulator of alloresponses and provide a novel small molecule inhibitor based approach that is effective in preventing early posttransplant GVHD lethality but that also permits donor T-cell responses to recover after a period of lymphopenic expansion. [source] Pooled Human Gammaglobulin Modulates Surface Molecule Expression and Induces Apoptosis in Human B CellsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2003Mieko Toyoda We have previously shown that the pooled human gammaglobulin (IVIG) inhibited mixed lymphocyte reaction (MLR). In this study, we examined (1) if IVIG contains blocking antibodies reactive with cell surface molecules required for alloantigen recognition and (2) if IVIG modulates these surface molecule expressions using flow cytometry. IVIG does not contain significant amounts of blocking antibodies against CD3, CD4, CD8, CD20, CD14, CD40, MHC class I and class II. It reduces the number of intact B cells and monocytes, reduces or modulates CD19, CD20 and CD40 expression on B cells, and induces morphological changes in B cells. This B-cell modulation results primarily because of apoptosis. IVIG also induces apoptosis in T cells and monocytes, but to a lesser degree. Induction of apoptosis requires the intact IgG molecule. Reduction of intact B cell and monocyte cell numbers, modulation of surface molecule expression on B cells, and deletion of B and T cells by apoptosis could result in inhibition of optimal T-cell activation. This likely represents the primary mechanism responsible for IVIG suppression of the MLR, and may account for many of the observed beneficial effects of IVIG seen in the treatment of human autoimmune and alloimmune disorders. [source] The critical role of kinase activity of interleukin-1 receptor,associated kinase 4 in animal models of joint inflammationARTHRITIS & RHEUMATISM, Issue 6 2009Magdalena Koziczak-Holbro Objective We have previously reported that the kinase activity of interleukin-1 receptor,associated kinase 4 (IRAK-4) is important for Toll-like receptor and interleukin-1 receptor signaling in vitro. Using mice devoid of IRAK-4 kinase activity (IRAK-4 KD mice), we undertook this study to determine the importance of IRAK-4 kinase function in complex disease models of joint inflammation. Methods IRAK-4 KD mice were subjected to serum transfer,induced (K/BxN) arthritis, and migration of transferred spleen lymphocytes into joints and cartilage and bone degradation were assessed. T cell response in vivo was tested in antigen-induced arthritis (AIA) by measuring the T cell,dependent antigen-specific IgG production and frequency of antigen-specific T cells in the spleen and lymph nodes. T cell allogeneic response was tested in vitro by mixed lymphocyte reaction (MLR). Results Lipopolysaccharide-induced local neutrophil influx into subcutaneous air pouches was impaired in IRAK-4 KD mice. These mice were also protected from inflammation in the K/BxN and AIA models, as shown by reduced swelling of joints. Histologic analysis of joints of K/BxN serum,injected mice revealed that bone erosion, osteoclast formation, and cartilage matrix proteoglycan loss were reduced in IRAK-4 KD mice. Assessment of T cell response by MLR, by frequency of antigen-specific clones, and by production of antigen-specific IgG did not reveal substantial differences between IRAK-4 KD and wild-type mice. Conclusion These results demonstrate that IRAK-4 is a key component for the development of proarthritis inflammation, but that it is not crucial for T cell activation. Therefore, the kinase function of IRAK-4 appears to be an attractive therapeutic target in chronic inflammation. [source] Programmed death-1 ligands-transfected dendritic cells loaded with glutamic acid decarboxylase 65 (GAD65) inhibit both the alloresponse and the GAD65-reactive lymphocyte responseCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2008F.-R. He Summary Type 1 diabetes (T1D) is due to a loss of immune tolerance to islet antigens, such as glutamic acid decarboxylase 65 (GAD65), for which islet transplantation is a promising therapy. Therefore, the generation of tolerance aiming at both alloantigen and GAD65 will help therapeutic intervention greatly in T1D. In this study, we tested the effect of programmed death-1 ligands (PD-L1)-transfected dendritic cells (DC) loaded with GAD65 on the alloresponse and GAD65-reactive lymphocyte response. The DC2·4 cell line was transfected with PD-L1 and co-cultured with GAD65. BALB-c mice were primed, respectively, by intraperitoneal injection with GAD65, PD-L1-transfected- or non-transfected DC (PD-L1/DC or DC), and PD-L1-transfected- or non-transfected DC loaded with GAD65 (PD-L1/DC/GAD65 or DC/GAD65). Splenocytes of treated mice were isolated and restimulated in vitro with GAD65 or the various DC populations above being used as stimulators, respectively. In the mixed lymphocyte reaction, DC/GAD65 were able to stimulate both allogeneic and GAD65-reactive lymphocytes. However, PD-L1/DC/GAD65 were poorer than DC/GAD65 at activating the GAD65-reactive lymphocyte response. Further, although PD-L1/DC could inhibit the alloresponse, PD-L1/DC/GAD65 were more effective at down-regulating the GAD65-reactive lymphocyte response. More importantly, PD-L1/DC/GAD65-primed lymphocytes exhibited the weakest proliferation when again restimulated in vitro by PD-L1/DC/GAD65. Additionally, PD-L1/DC/GAD65 down-regulated interferon-, and up-regulated interleukin-10 production by activated lymphocytes. Therefore, combined stimulation in vivo and in vitro by PD-L1/DC/GAD65 could inhibit both the alloresponse and the GAD65-reactive lymphocyte response, which may contribute to controlling diabetes and islet transplant rejection. [source] Autoantibodies against CD28 are associated with atopic diseasesCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2006K. Neuber Summary The B7-1/B7-2-CD28/CTLA-4 pathway is crucial in regulating T cell activation and tolerance. Autoantibodies to surface molecules on lymphocytes have already been described in various immune conditions, such as autoimmune diseases, infections and blood transfusions. The objective of this study was to test sera from healthy individuals and from patients for association of CD28 autoantibodies with inflammatory and non-inflammatory diseases. First, CD28 was obtained by digestion of CD28-Ig fusion protein with trypsin. The cleavage products were separated by sodium dodecyl sulphate,page gel electrophoresis. Additionally, a CD28/GST fusion protein was expressed in Escherichia coli and was used to establish an enzyme-linked immunosorbent assay for detection of autoantibodies against CD28. Sera from healthy individuals (n = 72) and patients with different inflammatory and non-inflammatory skin diseases (n = 196) were tested for the presence of autoantibodies against CD28. Using mixed lymphocyte reaction (MLR), purified autoantibodies against CD28 were tested for their effects on CTLA-4-Ig-induced T cell anergy. In this study, for the first time, we describe the existence of autoantibodies against CD28 in humans which are associated with atopic diseases, e.g. allergic rhinitis and asthma. These antibodies stimulate T cells and overcome the CTLA-4-Ig-induced anergy of T cells in an MLR. The existence of autoantibodies against CD28, which may have a T cell-stimulating function, has been shown. The data indicate that autoantibodies against CD28 could be a new immunological mechanism in allergic inflammation. Additionally, autoantibodies against CD28 could be an important new marker to discriminate between atopic diseases and other inflammatory skin diseases. [source] IMMUNOCHEMICAL CHARACTERIZATION OF THE FUNCTIONAL CONSTITUENTS OF TRIPTERYGIUM WILFORDII CONTRIBUTING TO ITS ANTI-INFLAMMATORY PROPERTYCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1 2008Kwong-Fai Wong SUMMARY 1Tripterygium wilfordii (TW) contains bioactive compounds that possess immunosuppressive properties. These compounds are considered to be potential drugs in the treatment of acute graft rejections. However, their structure,activity relationships remain unknown. 2The aim of the present study was to delineate the molecular moieties of triptolide that could account for its ability to inhibit inflammatory responses. In this context, purified TW active compounds (triptolide and triptonide) and synthetic triptolide derivatives were prepared to investigate the structure,activity relationships of triptolide. To this end, rat splenocytes were treated with increasing concentrations of the compounds and then allogenically stimulated using a mixed lymphocyte reaction to determine their antiproliferative activities. From the results, the IC50 value of each compound was calculated. 3Modification of the ,-hydroxyl group at the C-14 position of the triptolide molecule significantly affected the immunosuppressive activity of T59, as demonstrated by a sevenfold increase of the IC50. Conversely, reduction of the ,-butyrolactone group in T60 and T61 completely abrogated the antiproliferative effect. Alterations in the C-14 ,-hydroxyl and ,-butyrolactone groups also resulted in reduced cytotoxicity. 4The present findings demonstrate that the C-14 ,-hydroxyl and ,-butyrolactone moieties of the triptolide molecule are crucial for its anti-inflammatory properties and cytotoxicity and are responsible for the compound's antiproliferative activity. [source] Immunostimulatory Effects of Mesenchymal Stem Cell-Derived Neurons: Implications for Stem Cell Therapy in Allogeneic TransplantationsCLINICAL AND TRANSLATIONAL SCIENCE, Issue 1 2008Marianne D. Castillo Abstract Mesenchymal stem cells (MSCs) differentiate along various lineages to specialized mesodermal cells and also transdifferentiate into cells such as ectodermal neurons. MSCs are among the leading adult stem cells for application in regenerative medicine. Advantages include their immune-suppressive properties and reduced ethical concerns. MSCs also show immune-enhancing functions. Major histocompatibility complex II (MHC-II) is expected to be downregulated in MSCs during neurogenesis. Ideally, "off the shelf" MSCs would be suited for rapid delivery into patients. The question is whether these MSC-derived neurons can reexpress MHC-II in a milieu of inflammation. Western analyses demonstrated gradual decrease in MHC-II during neurogenesis, which correlated with the expression of nuclear CIITA, the master regulator of MHC-II expression. MHC-II expression was reversed by exogenous IFNY. One-way mixed lymphocyte reaction with partly differentiated neurons showed a stimulatory effect, which was partly explained by the release of the proinflammatory neurotransmitter substance P (SP), cytokines, and decreases in miR-130a and miR-206. The anti-inflammatory neurotransmitters VIP and CGRP were decreased at the peak time of immune stimulation. In summary, MSC-derived neurons show decreased MHC-II expression, which could be reexpressed by IFNY. The release of neurotransmitters could be involved in initiating inflammation, underscoring the relevance of immune responses as consideration for stem cell therapies. [source] Cytomegalovirus hyperimmunoglobulin: mechanisms in allo-immune response in vitroEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 12 2007K. Hoetzenecker Abstract Background Cytomegalovirus hyperimmunoglobulin (CMVIg) containing drugs are routinely administered in cardiac transplantation for prophylaxis against CMV disease. Yet little is known about their influence on transplant relevant immune functions. The aim of this study was to evaluate the effect of CMVIg on cellular immunity in in vitro experiments and to define their role in tolerance inducing mechanisms. Materials and methods/results CMVIg reduces proliferation in mixed lymphocyte reactions and anti-CD3 blastogenesis assays and is related to decreased production of immune modulating cytokines interleukin (IL)-2, interferonr (IFN,), IL-10. This antiproliferative effect is associated with a cell-cycle arrest in the G0/G1 phase and induction of apoptosis in CD8+ and natural killer cells. Co-incubation with CMVIg causes down-regulation of cell bound immunoglobulin and Fc,RIII surface expression on natural killer cells and leads to attenuation of antibody dependent cellular cytotoxicity effector functions. Conclusions We conclude that CMVIg induces immunological features on leukocytes in vitro that are known to be related to tolerance induction. Our observations extend the current concept of CMVIg as passive CMV prophylaxis to a therapeutic drug compound capable of reducing allogeneic immune response. [source] Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosusIMMUNOLOGY, Issue 3 2006Bailin Liang Summary Systemic lupus erythematosus (SLE) is an autoimmune disease resulting from dysregulation of the immune system. Interleukin-6 (IL-6) is a multifunctional cytokine produced by macrophages, monocytes and T and B cells. It stimulates B-cell differentiation/maturation, immunoglobulin secretion, and T-cell functions. Elevated levels of IL-6 in serum, urine and renal glomeruli were detected in patients with active SLE and in murine models of SLE. Our study investigated the role of IL-6 in an SLE-like disease in New Zealand Black/White (NZB/W) F1 mice by administration of an anti-murine IL-6 monoclonal antibody (mAb). Intraperitoneal administration of the anti-IL-6 mAb suppressed the production of anti-dsDNA autoantibody. B-cell proliferation induced by anti-IgM and anti-CD40 was lower in the anti-IL-6 mAb-treated mice, ex vivo studies demonstrated that anti-IL-6 mAb treatment inhibited anti-dsDNA production. Anti-CD3-induced T-cell proliferation and mixed lymphocyte reactions were inhibited by anti-IL-6 mAb treatment, indicating a partial down-regulation of T cells. Histological analysis showed that treatment with anti-IL-6 mAb prevented the development of severe kidney disease. These results suggest that treatment with anti-IL-6 mAb has a beneficial effect on autoimmunity in murine SLE and that autoreactive B cells may be the primary target for anti-IL-6 mAb treatment; its effect on autoreactive T cells is also indicated. [source] Distribution of Langerhans cells and mast cells within the human oral mucosa: new application sites of allergens in sublingual immunotherapy?ALLERGY, Issue 6 2008J.-P. Allam Background:, Sublingual immunotherapy (SLIT) represents an alternative to subcutaneous immunotherapy. While antigen-presenting cells such as Langerhans cells (LCs) are thought to contribute to the effectiveness of SLIT, mast cells (MCs) most likely account for adverse reactions such as sublingual edema. As little is known about LCs and MCs within the oral cavity, we investigated their distribution in search for mucosal sites with highest LCs and lowest MCs density. Methods:, Biopsies were taken simultaneously from human vestibulum, bucca, palatum, lingua, sublingua, gingiva, and skin. Immunohistochemistry and flow cytometry were used to detect MCs, LCs and high affinity receptor for IgE (Fc,RI) expression of LCs. Mixed lymphocyte reactions were performed to assess their stimulatory capacity. Results:, Highest density of MCs was detected within the gingiva, while the lowest density of MCs was found within the palatum and lingua. However, sublingual MCs were located within glands, which might explain swelling of sublingual caruncle in some SLIT patients. Highest density of LCs was detected within the vestibular region with lowest density in sublingual region. Highest expression of Fc,RI was detected on LCs within the vestibulum. Furthermore LCs from different regions displayed similar stimulatory capacity towards allogeneic T cells. Conclusions:, In view of our data, different mucosal regions such as the vestibulum might represent alternative SLIT application sites with potent allergen uptake. Our data might serve as a basis for new application strategies for SLIT to enhance efficiency and reduce local adverse reactions. [source] Following Anti-CD25 Treatment, A Functional CD4+CD25+ Regulatory T-Cell Pool Is Present in Renal Transplant RecipientsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2007E. Kreijveld Daclizumab, a humanized antibody directed against the ,-chain of the interleukin-2 receptor (CD25), has shown efficacy in the prevention of acute rejection following organ transplantation. However, anti-CD25 therapy can be expected to affect not only alloreactive effector T cells, but also CD4+CD25+ regulatory T (Treg) cells that are shown to play an important role in the induction of transplantation tolerance. Therefore, the size and function of the Treg pool in human renal allograft recipients after single-dose daclizumab administration was investigated in this study. Approximately 8 weeks after administration, daclizumab was cleared from the circulation and the Treg population then present appeared not different from that observed before transplantation. Functional analysis revealed that the Treg possessed a normal capacity to suppress mixed lymphocyte reactions in vitro. These data indicate that after daclizumab therapy a Treg population, normal in number and function, is present in the peripheral blood of renal transplant recipients. [source] Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosusARTHRITIS & RHEUMATISM, Issue 1 2009George K. Bertsias Objective A putative regulatory intronic polymorphism (PD1.3) in the programmed death 1 (PD-1) gene, a negative regulator of T cells involved in peripheral tolerance, is associated with increased risk for systemic lupus erythematosus (SLE). We undertook this study to determine the expression and function of PD-1 in SLE patients. Methods We genotyped 289 SLE patients and 256 matched healthy controls for PD1.3 by polymerase chain reaction,restriction fragment length polymorphism analysis. Expression of PD-1 and its ligand, PDL-1, was determined in peripheral blood lymphocytes and in renal biopsy samples by flow cytometry and immunohistochemistry. A crosslinker of PD-1 was used to assess its effects on anti-CD3/anti-CD28,induced T cell proliferation and cytokine production. Results SLE patients had an increased frequency of the PD1.3 polymorphism (30.1%, versus 18.4% in controls; P = 0.006), with the risk A allele conferring decreased transcriptional activity in transfected Jurkat cells. Patients homozygous for PD1.3,but not patients heterozygous for PD1.3,had reduced basal and induced PD-1 expression on activated CD4+ T cells. In autologous mixed lymphocyte reactions (AMLRs), SLE patients had defective PD-1 induction on activated CD4+ cells; abnormalities were more pronounced among homozygotes. PD-1 was detected within the glomeruli and renal tubules of lupus nephritis patients, while PDL-1 was expressed by the renal tubules of both patients and controls. PD-1 crosslinking suppressed proliferation and cytokine production in both normal and lupus T cells; addition of serum from patients with active SLE significantly ameliorated this effect on proliferation. Conclusion SLE patients display aberrant expression and function of PD-1 attributed to both direct and indirect effects. The expression of PD-1/PDL-1 in renal tissue and during AMLRs suggests an important role in regulating peripheral T cell tolerance. [source] |