Home About us Contact | |||
Lys Residues (ly + residue)
Selected AbstractsTransport-dependent endocytosis and turnover of a uric acid-xanthine permeaseMOLECULAR MICROBIOLOGY, Issue 1 2010Christos Gournas Summary In this work we unmask a novel downregulation mechanism of the uric acid/xanthine transporter UapA, the prototype member of the ubiquitous Nucleobase-Ascorbate Transporter family, directly related to its function. In the presence of substrates, UapA is endocytosed, sorted into the multivesicular body pathway and degraded in vacuoles. Substrate-induced endocytosis, unlike ammonium-induced turnover, is absolutely dependent on UapA activity and several lines of evidence showed that the signal for increased endocytosis is the actual translocation of substrates through the UapA protein. The use of several UapA functional mutants with altered kinetics and specificity has further shown that transport-dependent UapA endocytosis occurs through a mechanism, which senses subtle conformational changes associated with the transport cycle. We also show that distinct mechanisms of UapA endocytosis necessitate ubiquitination of a single Lys residue (K572) by HulARsp5. Finally, we demonstrate that in the presence of substrates, non-functional UapA versions can be endocytosed in trans if expressed in the simultaneous presence of active UapA versions, even if the latter cannot be endocytosed themselves. [source] Engineering the prion protein using chemical synthesisCHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2001H.L. Ball Abstract: In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, ,-helical cellular protein (PrPC) into a ,-sheet-rich pathogenic isoform (PrPSc). The ability to form PrPSc in transgenic mice is retained by a 106 residue ,mini-prion' (PrP106), with the deletions 23,88 and 141,176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N -(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90,200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t -Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPC is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPC. The chemical manipulation of such biologically relevant forms of PrP by the introduction of point mutations or groups that mimic post-translational modifications should enhance our understanding of the processes that cause prion diseases and may lead to the chemical synthesis of an infectious agent. [source] Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodiesDRUG DEVELOPMENT RESEARCH, Issue 3 2004Reed J. Harris Abstract Stable therapeutic antibody dosage forms present production technology challenges, particularly when high-concentration formulations are needed to meet the elevated dose requirements that are generally required for successful antibody therapy. Solid dosage forms, such as lyophilized powders, are generally more stable than liquid formulations. High-concentration drug products can be achieved by reconstitution of the lyophilisate in a smaller volume than its initial (pre-lyophilization) volume, but requires a significant vial overfill. High-concentration liquid formulations are becoming feasible as new techniques and technologies become available. Analytical methods to detect subtle molecular variations have been developed to demonstrate manufacturing consistency. Some molecular heterogeneity is contributed by conserved sites, such as Asn297 glycosylation and the loss of heavy chain C-terminal Lys residues. Characteristics that affect potency, stability, or immunogenicity must be elucidated for each therapeutic antibody. Drug Dev. Res. 61:137,154, 2004. © 2004 Wiley-Liss, Inc. [source] Effect of mutations in the ,5,,7 loop on the structure and properties of human small heat shock protein HSP22 (HspB8, H11)FEBS JOURNAL, Issue 21 2007Alexei S. Kasakov The human genome encodes ten different small heat shock proteins, each of which contains the so-called ,-crystallin domain consisting of 80,100 residues and located in the C-terminal part of the molecule. The ,-crystallin domain consists of six or seven ,-strands connected by different size loops and combined in two ,-sheets. Mutations in the loop connecting the ,5 and ,7 strands and conservative residues of ,7 in ,A-, ,B-crystallin and HSP27 correlate with the development of different congenital diseases. To understand the role of this part of molecule in the structure and function of small heat shock proteins, we mutated two highly conservative residues (K137 and K141) of human HSP22 and investigated the properties of the K137E and K137,141E mutants. These mutations lead to a decrease in intrinsic Trp fluorescence and the double mutation decreased fluorescence resonance energy transfer from Trp to bis-ANS bound to HSP22. Mutations K137E and especially K137,141E lead to an increase in unordered structure in HSP22 and increased susceptibility to trypsinolysis. Both mutations decreased the probability of dissociation of small oligomers of HSP22, and mutation K137E increased the probability of HSP22 crosslinking. The wild-type HSP22 possessed higher chaperone-like activity than their mutants when insulin or rhodanase were used as the model substrates. Because conservative Lys residues located in the ,5,,7 loop and in the ,7 strand appear to play an important role in the structure and properties of HSP22, mutations in this part of the small heat shock protein molecule might have a deleterious effect and often correlate with the development of different congenital diseases. [source] Lysyl Hydroxylase-2b Directs Collagen Cross-Linking Pathways in MC3T3-E1 Cells,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2004Suchaya Pornprasertsuk Abstract To elucidate the roles of LH2b in collagen cross-linking, MC3T3-E1 cell clones expressing higher (S) or lower (AS) levels of LH2b were established. Compared with controls, the collagen cross-linking pattern was shifted toward hydroxylysine-aldehyde (S clones)- or lysine-aldehyde (AS clones)-derived pathways. The data indicate that LH2b directs collagen cross-linking pathways through its action on telopeptidyl lysine residues. Introduction: Lysine (Lys) hydroxylation is a post-translational modification of collagen critical for cross-linking and glycosylation. Currently, three isoforms of lysyl hydroxylase (LH) have been identified, but their specific functions are still not well defined. Recently, we proposed that LH2 might modulate collagen cross-linking pattern through its action on Lys residues located in the telopeptide domains of collagen. Materials and Methods: To directly test this hypothesis, several MC3T3-E1 cell-derived clones expressing higher (sense [S]) or lower (antisense [AS]) levels of LH2b, the predominant form of LH2 in this cell line, were established and cultured for 2 weeks, and collagen cross-links and precursor aldehydes in the matrices were analyzed. Results: In S clones tested, the ratio of dihydroxylysinonorleucine (DHLNL) to hydroxylysinonorleucine (HLNL) was significantly higher than the average of controls (76% and 140% increase, respectively), and the level of pyridinoline (Pyr) was elevated (100% and 150% increase, respectively). In contrast, when MC3T3-E1 cells were transfected with a LH2b antisense construct (AS clones), the DHLNL/HLNL ratios were significantly lower than that of controls (56% and 73% decrease, respectively), and Pyr was not detected. Furthermore, significant amounts of an aldol-derived cross-link, dehydrohistidinohydroxymerodesmosine, were produced (,0.3 mol/mol of collagen) in AS clones. Conclusions: The data clearly show a critical role of LH2b in determining collagen cross-linking pathways, most likely through its action on telopeptidyl Lys residues. [source] Mutations on N -terminal region of Taiwan cobra phospholipase A2 result in structurally distorted effectsJOURNAL OF PEPTIDE SCIENCE, Issue 8 2008Yi-Ling Chiou Abstract In the present study, three Taiwan cobra PLA2 variants were prepared by adding an extra N -terminal Met, substituting Asn-1 by Met or deleting the N -terminal heptapeptide. Recombinant PLA2 mutants were expressed in Escherichia coli (E. coli), and purified to homogeneity by reverse phase HPLC. Fluorescence measurement showed that the hydrophobic character of the catalytic site, the microenvironment of Trp residues and energy transfer from excited Trp to 8-anilinonaphthalene sulfonate (ANS) were affected by N -terminal mutations. An alteration in the structural flexibility of the active site was noted with the mutants lacking the N -terminal heptapeptide or with an extra N -terminal Met added as evidenced by the inability of the two variants to bind with Ba2+. Moreover, modification of Lys residues and energy transfer within the protein-ANS complex revealed that the Ca2+ -induced change in the global structure of PLA2 was different from that in N -terminal variants. Together with the fact that an ,activation network' connects the N -terminus with the active site, our data suggest that mutagenesis on the N -terminal region affects directly the fine structure of the catalytic site, which subsequently transmits its influence in altering the structure outside the active site of PLA2. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source] Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptidesJOURNAL OF PEPTIDE SCIENCE, Issue 4 2007Marilena Manea Abstract Trypsin cleaves specifically peptide bonds at the C -terminal side of lysine and arginine residues, except for -Arg-Pro- and -Lys-Pro- bonds which are normally resistant to proteolysis. Here we report evidence for a -Lys-Pro- tryptic cleavage in modified oligotuftsin derivatives, Ac-[TKPKG]4 -NH2) (1), using high-resolution mass spectrometry and HPLC as primary methods for analysis of proteolytic reactions. The proteolytic susceptibility of -Lys-Pro- bonds was strongly dependent on flanking residues, and the flexibility of the peptide backbone might be a prerequisite for this unusual cleavage. While -Lys-Gly- bonds in 1 were rapidly cleaved, the modification of these Lys residues by the attachment of a ß-amyloid(4,10) epitope to yield -Lys(X)-Gly derivatives prevented cleavage of this bond, and provided trypsin cleavage of -Lys-Pro- bonds, the pathway of this degradation being independent on the type of Lys- N, -side chains (acetyl group, amino acid, peptide). Substitution of the Lys residues by Ala at the P,2 positions decreased the tryptic cleavage, while replacement of the bulky side chain of Thr at the P2 positions strongly increased the cleavage of -Lys-Pro- bonds. Circular dichroism (CD) data of the modified oligotuftsin derivatives are in accord with enhanced flexibility of the peptide backbone, as a prerequisite for increased susceptibility to cleavage of -Lys-Pro- bonds. These results obtained of oligotuftsin derivatives might have implications for the proteolytic degradation of target peptides that require specific conformational preconditions. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] Peptide profile of human acquired enamel pellicle using MALDI tandem MSJOURNAL OF SEPARATION SCIENCE, JSS, Issue 3 2008Rui Vitorino Abstract The present study proposes a strategy for human in vivo acquired enamel pellicle (AEP) peptidome characterisation based on sequential extraction with guanidine and TFA followed by MALDI-TOF/TOF identification. Three different nanoscale analytical approaches were used: samples were subjected to tryptic digestion followed by nano-HPLC and mass spectrometry (MS and MS/MS) analysis. Undigested samples were analysed by LC-MS (both linear and reflector modes) and LC-MS/MS analysis, and samples were subjected to nano-HPLC followed by on-plate digestion and mass spectrometry (MS and MS/MS) analysis. The majority of the identifications corresponded to peptide/protein fragments of salivary protein, belonging to the classes: acidic PRPs, basic PRPs, statherin, cystatins S and SN and histatin 1 (all also identified in intact form). Overall, more than 90 peptides/proteins were identified. Results clearly show that peptides with acidic groups are enriched in the TFA fraction while peptides with no acidic or phosphate groups are prevalent on the guanidine extract. Also, phosphorylated peptides were observed mainly on the TFA fraction. Fragments present in the AEP show a predominance of cleavage points located at Arg, Tyr and Lys residues. Obtained data suggest that proteolytic activity could influence AEP formation and composition. [source] Effects of Chain Length and N-Methylation on a Cation,, Interaction in a ,-Hairpin PeptideCHEMISTRY - A EUROPEAN JOURNAL, Issue 20 2007Robert Abstract The effects of N-methylation and chain length on a cation,, interaction have been investigated within the context of a ,-hairpin peptide. Significant enhancement of the interaction and structural stabilization of the hairpin have been observed upon Lys methylation. Thermodynamic analysis indicates an increased entropic driving force for folding upon methylation of Lys residues. Comparison of lysine to analogues ornithine (Orn) and diaminobutyric acid (Dab) indicates that lysine provides the strongest cation,, interaction and also provides the most stable ,-hairpin due to a combination of side chain,side chain interactions and ,-sheet propensities. These studies have significance for the recognition of methylated lysine in histone proteins. [source] Influence of Ionization State on the Activation of Temocapril by hCES1: A Molecular-Dynamics StudyCHEMISTRY & BIODIVERSITY, Issue 11 2009Giulio Vistoli Abstract Temocapril is a prodrug whose hydrolysis by carboxylesterase 1 (CES1) yields the active ACE inhibitor temocaprilat. This molecular-dynamics (MD) study uses a resolved structure of the human CES1 (hCES1) to investigate some mechanistic details of temocapril hydrolysis. The ionization constants of temocapril (pK1 and pK3) and temocaprilat (pK1, pK2, and pK3) were determined experimentally and computationally using commercial algorithms. The constants so obtained were in good agreement and revealed that temocapril exists mainly in three ionic forms (a cation, a zwitterion, and an anion), whereas temocaprilat exists in four major ionic forms (a cation, a zwitterion, an anion, and a dianion). All these ionic forms were used as ligands in 5-ns MS simulations. While the cationic and zwitterionic forms of temocapril were involved in an ion-pair bond with Glu255 suggestive of an inhibitor behavior, the anionic form remained in a productive interaction with the catalytic center. As for temocaprilat, its cation appeared trapped by Glu255, while its zwitterion and anion made a slow departure from the catalytic site and a partial egress from the protein. Only its dianion was effectively removed from the catalytic site and attracted to the protein surface by Lys residues. A detailed mechanism of product egress emerges from the simulations. [source] |