Lung Sections (lung + section)

Distribution by Scientific Domains


Selected Abstracts


Caveolin-1 influences P2X7 receptor expression and localization in mouse lung alveolar epithelial cells

FEBS JOURNAL, Issue 12 2007
K. Barth
The P2X7 receptor has recently been described as a marker for lung alveolar epithelial type I cells. Here, we demonstrate both the expression of P2X7 protein and its partition into lipid rafts in the mouse lung alveolar epithelial cell line E10. A significant degree of colocalization was observed between P2X7 and the raft marker protein Caveolin-1; also, P2X7 protein was associated with caveolae. A marked reduction in P2X7 immunoreactivity was observed in lung sections prepared from Caveolin-1-knockout mice, indicating that Caveolin-1 expression was required for full expression of P2X7 protein. Indeed, suppression of Caveolin-1 protein expression in E10 cells using short hairpin RNAs resulted in a large reduction in P2X7 protein expression. Our data demonstrate a potential interaction between P2X7 protein and Caveolin-1 in lipid rafts, and provide a basis for further functional and biochemical studies to probe the physiologic significance of this interaction. [source]


Toxico-kinetics, recovery efficiency and microsomal changes following administration of deltamethrin to black Bengal goats

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 3 2001
Sanis Juliet
Abstract A study of the toxico-kinetics, recovery percentage from different substrates, cytotoxicity and role of cytochrome P450 and b5 of liver microsome in the metabolism of deltamethrin were carried out in female black Bengal goat. The ALD50 value of deltamethrin in goat by intravenous route lies between 0.2 and 0.6,mg,kg,1. Intravenous disposition kinetics using a dose of 0.2,mg,kg,1 showed that the maximum blood concentration of deltamethrin was recorded at 0.5,min, followed by rapid decline, and a minimum concentration was detected at 6,min after administration. The following values were obtained,:,Vdarea 0.148 (±,0.02) litre,kg,1; t1/2 (,) 0.22 (±,0.02),min; t1/2 (,) 2.17 (±,0.37),min; Kel 1.05 (±,0.24) min,1; AUC 4.30(±,0.45),µg min,ml,1; ClB 0.05 (±,0.006) litre,kg,1 min,1; T,B 1.93 (±,0.58); fc 0.40(±,0.05). After 10,min, liver retained the maximum residue, and heart, adrenal gland, kidney, spleen, fat and brain also held the insecticide; liver, fat, heart and spleen retained residue after 30,min, and bone, liver and fat retained residue after 60,min of intravenous administration. Oral absorption of deltamethrin was poor and inconsistent, and approximately 65% of administered dose was recovered from faeces and gastrointestinal contents. The excretion of deltamethrin through urine was meagre, and only 0.01 and 0.013% of the administered dose was recovered after 3 and 5 days of oral administration respectively. All the tissues retained the residue after 3 days; while fat, rumen, reticulum, omasum, abomasum, large and small intestine and bone retained the residue after 5 days of oral administration; and the percentage recoveries were 1.73 and 0.027 respectively. Deltamethrin reduced the level of cytochrome P450 content of liver microsomal pellet of goat after 5 days of oral administration. Histopathological examination of liver, kidney, heart, spleen brain and lung sections of treated goats did not reveal any pathological changes. © 2001 Society of Chemical Industry [source]


Increased surfactant protein-D and foamy macrophages in smoking-induced mouse emphysema

RESPIROLOGY, Issue 2 2007
Noriyuki HIRAMA
Background and objective: The molecular mechanisms underlying COPD remain undetermined. The lungs of surfactant protein-D (SP-D) deficient mice show emphysema and an excessive number of foamy macrophages. This study aims to elucidate roles of SP-D and foamy macrophages in smoking-induced mouse emphysema. Methods: Twenty B6C3F1 mice were exposed to cigarette smoke (2 cigarettes/day/mouse for 6 months). The mice were killed, and formalin-fixed, paraffin-embedded lung sections were carried out on seven mice, BAL was carried out on six mice, and seven mice were used to make lung homogenates. In in vitro studies, A549 cells were transduced with the SP-D expression plasmid and treated with cigarette smoke extract to evaluate cell viability. Results: Emphysema was induced in the mice by chronic cigarette smoke exposure. Increased expression of matrix metalloproteinase-9 and -12 was observed, and foamy alveolar macrophages accumulated in the smoke-exposed lungs. Immunostaining of BAL cells revealed the major source of matrix metalloproteinase-12 to be foamy alveolar macrophages. Furthermore, SP-D was elevated in emphysema lungs. Expression of transcription factors, Fra-1, junB and C/EBP, (which induce SP-D) were significantly elevated in emphysema lungs. The in vitro expression of SP-D gene in A549 cells prolonged cell survival following exposure to cigarette smoke condensate. Conclusions: The accumulation of foamy alveolar macrophages may play a key role in the development of smoking-induced emphysema. Increased SP-D may play a protective role in the development of smoking-induced emphysema, in part by preventing alveolar cell death. [source]


Distribution and Quantity of Contractile Tissue in Postnatal Development of Rat Alveolar Interstitium

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2008
Renée Dickie
Abstract Alpha,smooth muscle actin (,-SMA) -expressing cells are important participants in lung remodeling, during both normal postnatal ontogeny and after injury. Developmental dysregulation of these contractile cells contributes to bronchopulmonary dysplasia in newborns, and aberrant recapitulation in adults of the normal ontogeny of these cells has been speculated to underlie disease and repair in mature lungs. The significance of airway smooth muscle has been widely investigated, but contractile elements within the pulmonary parenchyma, although also of structural and functional consequence in developing and mature lungs, are relatively unstudied and little quantitative information exists. Here, we quantify the areal density of ,-SMA expression in lung parenchyma and assess changes in its spatiotemporal distribution through postnatal ontogeny. Using an antibody against ,-SMA, we immunofluorescently labeled contractile elements in lung sections from a postnatal growth series of rats. Images were segmented using thresholded pixel intensity. Alpha-SMA areal density in the alveolar interstitium was calculated by dividing the area of ,-SMA,positive staining by the tissue area. The areal density of ,-SMA in 2-day neonates was 3.7%, almost doubled, to 7.2% by 21 days, and decreased to 3% in adults. Neonates had large, elongate concentrations of ,-SMA, and ,-SMA localized both at septal tips and within the interstitium. In adults, individual areas of ,-SMA expression were smaller and more round, and located predominately in alveolar ducts, at alveolar ends and bends. The results are consistent with increasing ,-SMA expression during the period of peak myofibroblast activity, corresponding to the phase of rapid alveolarization in the developing lung. Anat Rec, 291:83,93, 2007. © 2007 Wiley-Liss, Inc. [source]


In situ hybridisation for identification and differentiation of Mycoplasma hyopneumoniae, Mycoplasma hyosynoviae and Mycoplasma hyorhinis in formalin-fixed porcine tissue sections,

APMIS, Issue 10 2001
M. BOYE
Oligonucleotide probes targeting 16S ribosomal RNA were designed for species-specific identification of the porcine mycoplasmas Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Mycoplasma hyosynoviae using a fluorescent in situ hybridisation assay. The specificity of the probes was evaluated using pure cultures as well as porcine tissue sections with artificial presence of mycoplasma, and the probes were found specific for the target organisms. The assay was applied on sections of 28 tissue samples from pigs infected with one or more of the three Mycoplasma species as determined by cultivation. M. hyopneumoniae and M. hyorhinis were identified in accordance with cultivation in lung sections from nine pigs affected by catarrhal to purulent bronchopneumonia. Likewise, in eight cases of fibrinous pericarditis, M. hyopneumoniae, M. hyorhinis and M. hyosynoviae were the infectious agents according to cultivation and were correctly identified by in situ hybridisation. Out of 11 joints cultivation positive for M. hyosynoviae, the probe was only able to identify M. hyosynoviae in eight cases probably due to a low number of microorganisms in the tissue sections. The in situ hybridisation assay is well suited for use in diagnostic and experimental work as well as a tool for pathogenesis studies. [source]