Lung Inflammatory Diseases (lung + inflammatory_disease)

Distribution by Scientific Domains


Selected Abstracts


Regulation of inflammation by PPARs: a future approach to treat lung inflammatory diseases?

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 5 2006
Julien Becker
Abstract Lung inflammatory diseases, such as acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis, represent a major health problem worldwide. Although glucocorticoids are the most potent anti-inflammatory drug in asthma, they exhibit major side effects and have poor activity in lung inflammatory disorders such as ALI or COPD. Therefore, there is growing need for the development of alternative or new therapies to treat inflammation in the lung. Peroxisome proliferator-activated receptors (PPARs), including the three isotypes PPAR,, PPAR, (or PPAR,) and PPAR,, are transcription factors belonging to the nuclear hormone receptor superfamily. PPARs, and in particular PPAR, and PPAR,, are well known for their critical role in the regulation of energy homeostasis by controlling expression of a variety of genes involved in lipid and carbohydrate metabolism. Synthetic ligands of the two receptor isotypes, the fibrates and the thiazolidinediones, are clinically used to treat dyslipidaemia and type 2 diabetes, respectively. Recently however, PPAR, and PPAR, have been shown to exert a potent anti-inflammatory activity, mainly through their ability to downregulate pro-inflammatory gene expression and inflammatory cell functions. The present article reviews the current knowledge of the role of PPAR, and PPAR, in controlling inflammation, and presents different findings suggesting that PPAR, and PPAR, activators may be helpful in the treatment of lung inflammatory diseases. [source]


Molecular mechanisms underlying inflammatory lung diseases in the elderly: Development of a novel therapeutic strategy for acute lung injury and pulmonary fibrosis,

GERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 3 2005
Takahide Nagase
In the elderly, inflammatory lung diseases, including acute lung injury and pulmonary fibrosis, are significant in terms of both mortality and difficulty in management. Acute respiratory distress syndrome (ARDS) is an acute lung injury and the mortality rate for ARDS ranges from 40 to 70% despite intensive care. Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disorder of the lung parenchyma. No useful drugs are currently available to treat IPF. However, molecular mechanisms underlying these lung diseases are little understood and the development of a novel therapeutic strategy is urgently needed. Platelet-activating factor (PAF) and metabolites of arachidonic acid, i.e. eicosanoids, are lipid mediators that have various biological effects. A key enzyme for the production of these inflammatory mediators, including eicosanoids and PAF, is phospholipase A2. In particular, cytosolic PLA2 (cPLA2) is especially important. The purpose of this article is to report novel findings regarding the role of PAF and cPLA2 in lung inflammatory diseases, especially, acute lung injury and pulmonary fibrosis. To address this question, we used mutant mice, i.e. PAFR transgenic mice, PAFR gene-disrupted mice and cPLA2 gene-disrupted mice. We have shown that PAF and eicosanoids, downstream mediators of cPLA2, may be involved in the pathogenesis of ARDS and IPF, which are important diseases in the elderly. Although there exist extreme differences in clinical features between ARDS and IPF, both diseases are fatal disorders for which no useful drugs are currently available. On the basis of recent reports using mutant mice, cPLA2 might be a potential target to intervene in the development of pulmonary fibrosis and acute lung injury in the elderly. [source]