Lumped Mass Matrix (lumped + mass_matrix)

Distribution by Scientific Domains


Selected Abstracts


Nonlinear transient dynamic analysis by explicit finite element with iterative consistent mass matrix

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 3 2009
Shen Rong Wu
Abstract Various mass matrices in the explicit finite element analyses of nonlinear transient dynamic problems are investigated. The matrices are obtained as a linear combination of lumped and consistent mass matrices. An iterative procedure to calculate the inverse of the consistent and the mixed mass matrices in the framework of explicit finite element method is presented. The convergence of the iterative procedure is proved. The inverse of the consistent and mixed mass matrices is approximated by the iteration and is used to compare the results from the lumped mass matrix. For the impact of a structural component and a vehicle, some difference in the results by using coarse mesh is observed. For the component using fine mesh, no significant difference is found. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM)

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2006
T. Menouillard
Abstract This paper focuses on the introduction of a lumped mass matrix for enriched elements, which enables one to use a pure explicit formulation in X-FEM applications. A proof of stability for the 1D and 2D cases is given. We show that if one uses this technique, the critical time step does not tend to zero as the support of the discontinuity reaches the boundaries of the elements. We also show that the X-FEM element's critical time step is of the same order as that of the corresponding element without extended degrees of freedom. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Projection and partitioned solution for two-phase flow problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2005
Andrea Comerlati
Abstract Multiphase flow through porous media is a highly nonlinear process that can be solved numerically with the aid of finite elements (FE) in space and finite differences (FD) in time. For an accurate solution much refined FE grids are generally required with the major computational effort consisting of the resolution to the nonlinearity frequently obtained with the classical Picard linearization approach. The efficiency of the repeated solution to the linear systems within each individual time step represents the key to improve the performance of a multiphase flow simulator. The present paper discusses the performance of the projection solvers (GMRES with restart, TFQMR, and BiCGSTAB) for two global schemes based on a different nodal ordering of the unknowns (ORD1 and ORD2) and a scheme (SPLIT) based on the straightforward inversion of the lumped mass matrix which allows for the preliminary elimination and substitution of the unknown saturations. It is shown that SPLIT is between two and three time faster than ORD1 and ORD2, irrespective of the solver used. Copyright © 2005 John Wiley & Sons, Ltd. [source]


LS-DYNA and the 8:1 differentially heated cavity

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 8 2002
Mark A. Christon
Abstract This paper presents results computed using LS-DYNA's new incompressible flow solver for a differentially heated cavity with an 8:1 aspect ratio at a slightly super-critical Rayleigh number. Three Galerkin-based solution methods are applied to the 8:1 thermal cavity on a sequence of four grids. The solution methods include an explicit time-integration algorithm and two second-order projection methods,one semi-implicit and the other fully implicit. A series of ad hoc modifications to the basic Galerkin finite element method are shown to result in degraded solution quality with the most serious effects introduced by row-sum lumping the mass matrix. The inferior accuracy of a lumped mass matrix relative to a consistent mass matrix is demonstrated with the explicit algorithm which fails to obtain a transient solution on the coarsest grid and exhibits a general trend to under-predict oscillation amplitudes. The best results are obtained with semi-implicit and fully implicit second-order projection methods where the fully implicit method is used in conjunction with a ,smart' time integrator. Copyright © 2002 John Wiley & Sons, Ltd. [source]