Lowest Singlet (lowest + singlet)

Distribution by Scientific Domains


Selected Abstracts


Origin of the Paramagnetic Properties of the Mixed-Valence Polyoxometalate [GeV14O40]8, Reduced by Two Electrons: Wave Function Theory and Model Hamiltonian Calculations

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 34 2009
N. Suaud
Abstract The aim of the work is to give an explanation of the magnetic properties of a mixed-valence [GeV14O40]8, polyoxometalate reduced by two electrons, which, in contrast to what happens in other two-electron-reduced polyoxometalates, does not show any magnetic coupling between the two unpaired electrons. For this purpose, a quantitative evaluation of the microscopic electronic parameters (electron transfer, magnetic coupling, magnetic orbital energy, and Coulomb repulsion) of the mixed-valence polyoxometalate cluster is performed. The parameters are extracted from valence-spectroscopy large configuration interaction (CI) calculations on embedded fragments. Then, these parameters are used in an extended t - J model Hamiltonian suited to model the properties of the whole anion. The analysis of the wave functions of the lowest singlet and triplet states and of the microscopic parameters emphasizes that the electron delocalization in this mixed-valence cluster is such that each unpaired electron is almost trapped in a different half of the polyoxovanadate, thus disabling any exchange interaction between them.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


The Energy of Charge-Transfer States in Electron Donor,Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 12 2009
Dirk Veldman
Abstract Here, a general experimental method to determine the energy ECT of intermolecular charge-transfer (CT) states in electron donor,acceptor (D,A) blends from ground state absorption and electrochemical measurements is proposed. This CT energy is calibrated against the photon energy of maximum CT luminescence from selected D,A blends to correct for a constant Coulombic term. It is shown that ECT correlates linearly with the open-circuit voltage (Voc) of photovoltaic devices in D,A blends via eVoc,=,ECT,,,0.5,eV. Using the CT energy, it is found that photoinduced electron transfer (PET) from the lowest singlet excited state (S1 with energy Eg) in the blend to the CT state (S1,,,CT) occurs when Eg,,,ECT,>,0.1,eV. Additionally, it is shown that subsequent charge recombination from the CT state to the lowest triplet excited state (ET) of D or A (CT,,,T1) can occur when ECT,,,ET,>,0.1,eV. From these relations, it is concluded that in D,A blends optimized for photovoltaic action: i) the maximum attainable Voc is ultimately set by the optical band gap (eVoc,=,Eg,,,0.6,eV) and ii) the singlet,triplet energy gap should be ,EST,<,0.2,eV to prevent recombination to the triplet state. These favorable conditions have not yet been met in conjugated materials and set the stage for further developments in this area. [source]


Photophysical and Photochemical Studies of Pyridoxamine

HELVETICA CHIMICA ACTA, Issue 10 2003
Claudio Bueno
The absorption and fluorescence emission of pyridoxamine were studied as function of pH and solvent properties. In the ground state, pyridoxamine exhibits different protonated forms in the range of pH,1.5,12. Fluorescence studies showed that the same species exist at the lowest singlet excited state but at different pH ranges. The phenol group is by ca. 8,units more acidic in the excited state than in the ground state. On the other hand, the pyridine N-atom is slightly more basic in the lowest excited state than in the ground state. Excitation spectra and emission decays in the pH range of 8,10 indicate the protonation of the pyridine N-atom by proton transfer from the amine group, in the ground and singlet excited states. Spectroscopic studies in different solvents showed that pyridoxamine in the ground or excited states exhibits intramolecular proton transfer from the pyridine N-atom to the phenol group, which is more favorable in solvents of low hydrogen-bonding capacity. The cationic form with the protonated phenolic group, which emits at shorter wavelength, is the dominant species in nonprotic solvents, but, in strong proton-donor solvents, both forms exist. The fluorescence spectra of these species exhibit blue shift in protic solvents. These shifts are well-correlated with the polarity and the H-donor ability of the solvent. [source]


TDDFT investigation on nucleic acid bases: Comparison with experiments and standard approach

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 5 2004
M.K. Shukla
Abstract A comprehensive theoretical study of electronic transitions of canonical nucleic acid bases, namely guanine, adenine, cytosine, uracil, and thymine, was performed. Ground state geometries were optimized at the MP2/6-311G(d,p) level. The nature of respective potential energy surfaces was determined using the harmonic vibrational frequency analysis. The MP2 optimized geometries were used to compute electronic vertical singlet transition energies at the time-dependent density functional theory (TDDFT) level using the B3LYP functional. The 6-311++G(d,p), 6-311(2+,2+)G(d,p), 6-311(3+,3+)G(df,pd), and 6-311(5+,5+)G(df,pd) basis sets were used for the transition energy calculations. Computed transition energies were found in good agreement with the corresponding experimental data. However, in higher transitions, the Rydberg contaminations were also obtained. The existence of ,,* type Rydberg transition was found near the lowest singlet ,,* state of all bases, which may be responsible for the ultrafast deactivation process in nucleic acid bases. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 768,778, 2004 [source]


Singlet,Singlet Annihilation Leading to a Charge-Transfer Intermediate in Chromophore-End-Capped Pentaphenylenes

CHEMPHYSCHEM, Issue 9 2007
Eduard Fron Dr.
Abstract The excited-state properties of two peryleneimide chromophore end-capped pentaphenylene compounds were investigated in detail using femtosecond transient absorption and single-photon timing experiments. Singlet,singlet annihilation was found to promote one chromophore into a higher excited state and results in the formation of an ultra-short-living intermediate charge-transfer (CT) state in the Sn,S1 deactivation pathway. In low-polarity solvents, this CT state is found to be energetically higher than the first excited state and thus cannot be populated via one-photon excitation. The observed CT state decays with a time constant of about 1 ps to form the lowest singlet excited state. These results demonstrate the potential use of the singlet,singlet annihilation as a novel tool in studying reactions occurring in states that are energetically above the S1. [source]


The Low-Lying Excited States of 2,2,-Bithiophene: A Theoretical Analysis

CHEMPHYSCHEM, Issue 12 2003
Mercedes Rubio Dr.
Abstract The low-energy regions of the singlet,singlet, singlet,triplet, and triplet,triplet electronic spectra of 2,2,-bithiophene are studied using multiconfigurational second-order perturbation theory (CASPT2) and extended atomic natural orbitals (ANO) basis sets. The computed vertical, adiabatic, and emission transition energies are in agreement with the available experimental data. The two lowest singlet excited states, 11Bu and 21Bu, are computed to be degenerate, a novel feature of the system to be borne in mind during the rationalization of its photophysics. As regards the observed high triplet quantum yield of the molecule, it is concluded that the triplet states 23Ag and 23Bu, separated about 0.4 eV from the two lowest singlet excited states, can be populated by intersystem crossing from nonplanar singlet states. [source]