Home About us Contact | |||
Lower Molecular Weight (lower + molecular_weight)
Selected AbstractsExtracellular matrix regulates alpha s1-casein gene expression in rabbit primary mammary cells and CCAAT enhancer binding protein (C/EBP) binding activityJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2001Geneviève Jolivet Abstract Previous studies have shown that both the signal transducer and activator of transcription 5 (STAT5) and the CCAAT enhancer binding proteins (C/EBPs) are involved in the regulation of casein gene expression by mammary epithelial cells. Prolactin (Prl) activation of STAT5 is necessary for casein gene expression. The extracellular matrix (ECM) regulates also casein gene expression. Here, we have investigated whether ECM regulates C/EBPs activity in primary rabbit mammary epithelial cells. Isolated primary mammary cells were cultured on plastic or on floating collagen I gel. Prolactin induced ,s 1-casein gene expression when cells were cultured on collagen but not on plastic. It is noteworthy that activated STAT5 was detected in both culture conditions. Several STAT5 isoforms (STAT5a, STAT5b, and other STAT5 related isoforms, some with lower molecular weight than the full-length STAT5a and STAT5b) were detected under the different culture conditions. However, their presence was not related to the expression of ,s 1-casein gene. The binding of nuclear factors to a C/EBP specific binding site and the protein level of C/EBP, differed in cells cultured on plastic or on collagen but these parameters were not modified by Prl. This suggests that C/EBP binding activity was regulated by ECM and not by Prl. Interestingly, these modifications were correlated to the expression of the ,s 1-casein gene. Hence, the activation of the ,s 1-casein gene expression depends on two independent signals, one delivered by Prl via the activation of STAT5, the other delivered by ECM via C/EBP. J. Cell. Biochem. 82:371,386, 2001. © 2001 Wiley-Liss, Inc. [source] Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic neviAGING CELL, Issue 4 2007Debdutta Bandyopadhyay Summary The retinoblastoma (RB)/p16INK4a pathway regulates senescence of human melanocytes in culture and oncogene-induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently detected in p16INK4a -positive, senescent intradermal melanocytic nevi but not in proliferating, recurrent nevus cells that localize to the epidermal/dermal junction. To assess the role of HDAC1 in the senescence of melanocytes and nevi, we used tetracycline-based inducible expression systems in cultured melanocytic cells. We found that HDAC1 drives a sequential and cooperative activity of chromatin remodeling effectors, including transient recruitment of Brahma (Brm1) into RB/HDAC1 mega-complexes, formation of heterochromatin protein 1, (HP1,)/SUV39H1 foci, methylation of H3-K9, stable association of RB with chromatin and significant global heterochromatinization. These chromatin changes coincide with expression of typical markers of senescence, including the senescent-associated ,-galactosidase marker. Notably, formation of RB/HP1, foci and early tethering of RB to chromatin depends on intact Brm1 ATPase activity. As cells reached senescence, ejection of Brm1 from chromatin coincided with its dissociation from HP1,/RB and relocalization to protein complexes of lower molecular weight. These results provide new insights into the role of the RB pathway in regulating cellular senescence and implicate HDAC1 as a likely mediator of early chromatin remodeling events. [source] A new human catalytic antibody Se-scFv-2D8 and its selenium-containing single domains with high GPX activityJOURNAL OF MOLECULAR RECOGNITION, Issue 4 2010Junjie Xu Abstract Glutathione peroxidase (GPX) is a well-known antioxidant selenoenzyme, which can catalyze the reduction of a variety of hydroperoxides and consequently protect cells and other biological tissues against oxidative damage. Many attempts have been made to mimic its function, and a human catalytic antibody Se-scFv-B3 with GPX activity has been prepared in our previous study. This time, a new clone 2D8 that bound specifically to the glutathione analog GSH-S-DNPBu was selected again by using the technology of phage display antibody library, and then scFv-2D8 was successfully expressed in soluble form and purified using Ni2+ -immobilized metal affinity chromatography. After being converted into selenium-containing scFv by chemically modification, it showed higher GPX activity than previous abzyme Se-scFv-B3. The heavy chain variable fragment of scFv-2D8 was also prepared and converted into selenium-containing protein using the same method. This selenium-containing single-domain antibody showed some GPX activity and, to the best of our knowledge, is the first human single-domain abzyme with GPX activity, which lays a foundation for preparing GPX abzyme with human origin, lower molecular weight and higher activity. Copyright © 2009 John Wiley & Sons, Ltd. [source] Use of chitosan-alginate as alternative pelletization aid to microcrystalline cellulose in extrusion/spheronizationJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2007Nattawut Charoenthai Abstract Two types of different molecular weight chitosan were investigated as a pelletization aid in extrusion/spheronization using water as granulation liquid. Spherical pellets with a maximum fraction of 60% w/w chitosan could be produced when 1.25,2.5% w/w sodium alginate was included in the formulations with no microcrystalline cellulose (MCC). Chitosan with lower molecular weight of 190 kDa showed a better pellet forming property. The pellets obtained had acceptable physical characteristics and a fast drug release. The results from Fourier transform infrared spectroscopy, differential scanning calorimetry and 13C CP-MAS nuclear magnetic resonance spectroscopy confirmed the formation of polyelectrolyte complex (PEC) between chitosan and sodium alginate, which might be a reason for successful pelletization by extrusion/spheronization. Moreover, the presence of PEC might influence the physical characteristics and dissolution behavior of chitosan-alginate pellets. The results indicated an achievement in production of pellets by extrusion/spheronization without using MCC. Moreover, chitosan combined with sodium alginate could be used as a promising alternative pelletization aid to MCC in extrusion/spheronization. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2469,2484, 2007 [source] Synthesis and characterization of organic/inorganic hybrid star polymers of 2,2,3,4,4,4-hexafluorobutyl methacrylate and octa(aminophenyl)silsesquioxane nano-cage made via atom transfer radical polymerizationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 22 2008H. Hussain Abstract Well-defined organic/inorganic hybrid fluorinated star polymers were synthesized via atom transfer radical polymerization (ATRP) of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFBMA) using octa(aminophenyl)silsesquioxane (OAPS) nano-cage as initiator. For this purpose, OAPS was transformed into ATRP initiator by reacting with 2-bromoisobutyrylbromide. ATR polymerization of HFBMA was carried out in trifluorotoluene at 75 °C using CuCl/2,2-bipyridine or N,N,N,,N,,N,-pentamethyldiethylenetriamine as catalyst system. GPC and 1H NMR data confirmed the synthesis of OAPS/PHFBMA hybrid star polymer. Kinetics of the ATR polymerization of HFBMA using OAPS nano-cage initiator was also investigated. The OAPS/PHFBMA hybrid stars were found to be molecularly dispersed in solution (THF); however, TEM micrographs revealed the formation of spherical particles of , 120,180 nm by the OAPS/PHFBMA hybrid star polymer after solvent evaporation. Thermal characterization of the nanocomposites by differential scanning calorimetry (DSC) revealed a slightly higher glass transition temperature (Tg) (when compared with the linear PHFBMA) of higher molecular weight OAPS/PHFBMA hybrid star polymers. In contrast, lower Tg than the linear PHFBMA was observed for OAPS/PHFBMA of relatively lower molecular weight (but higher than the linear PHFBMA). Thermal gravimetric analysis (TGA) showed a significant retardation (by ,60 °C) in thermal decomposition of nanocomposites when compared with the linear PHFBMA. Additionally, surface properties were evaluated by measuring the contact angles of water on polymer surfaces. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7287,7298, 2008 [source] Crystal Morphology of Mesoporous Silica Thin Films Synthesized by the Spin-Coating Method Using PEO,PPO,PEO Triblock CopolymerJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2002Gyeong-Su Park Mesoporous thin films on Si substrates with thicknesses of about 460,610 nm have been synthesized by the spin-coating method using a Pluronic EO77PO29EO77 (F68), EO104PO39EO104 (F88), and EO133PO50EO133 (F108) triblock copolymer system. The triblock copolymers were preserved within the synthesized mesoporous thin films. Transmission electron microscopy (TEM) characterization of these films clearly demonstrates that long-range mesostructural ordering strongly depends on the molecular weight of the poly(ethylene oxide),poly(propylene oxide),poly(ethylene oxide) (PEO,PPO,PEO) triblock copolymer, with lower molecular weight producing higher degrees of order. Plane and cross-sectional high-resolution TEM studies coupled with X-ray diffraction (XRD) analysis also show that highly ordered F68 mesoporous silica thin film forms a cubic structure with a lattice spacing a= 6.70 nm. [source] Pulsed field gradient (PFG) NMR spectroscopy: An effective tool for the analysis of mixtures of lubricating oil componentsLUBRICATION SCIENCE, Issue 4 2000G. S. Kapur Abstract In the presently reported work, the multinuclear two-dimensional (2D) diffusionordered nuclear magnetic resonance (NMR) spectroscopy (DOSY) technique based on the pulsed field gradient (PFG) has been used in experiments to analyse mixtures of lubricating oil components. One-dimensional (1D) PFG experiments have also been used to simplify and edit the NMR spectra of the mixtures. Such experiments provide a clean spectrum of the highest molecular weight (slower diffusing) component by eliminating the signals of lower molecular weight (faster diffusing) components, without any prior physical separation. These pulsed field gradient experiments not only facilitate the separation of resonance signals of different components, but also lead to their subsequent identification, and provide information about the number and structure of components in a mixture. Some examples of our initial efforts to establish 1D and 2D PFG-based NMR experiments for the analysis of mixtures of lubricating oil components are given and assessed to illustrate the potential applications of such techniques in the field of lubricating oils. [source] Amphiphilic block copolymers of PtBA- b -PMMA as compatibilizers for blends of PET and PMMAPOLYMER ENGINEERING & SCIENCE, Issue 9 2006B. Dewangan PET and PMMA were blended at various weight fractions. These blends were compatibilized by employing amphiphilic block copolymers of PtBA- b -PMMA, having three compositions (1:3, 1:1, 3:1) and three weight fractions (3, 5, and 7 wt%) using a co-rotating twin screw extruder. The blends were evaluated for their mechanical, rheological, and morphological properties. Overall, the compatiblized blends showed improvement in properties compared with the properties of noncompatiblized blends. Mechanical properties of the compatibilized blends improved with an increase in the PMMA and compatibilizer weight fractions. It was observed that the compatibilizer with lower molecular weight and lower glass transition temperature, typically at 5 wt%, provided the overall best properties. POLYM. ENG. SCI. 46:1147,1152, 2006. © 2006 Society of Plastics Engineers. [source] Domain structure and miscibility studies of blends of styrene,butadiene,styrene block copolymers (SBS) and styrene,glycidyl methacrylate statistical copolymers (PS-GMA) using SAXS and DMTAPOLYMER INTERNATIONAL, Issue 3 2007LB Canto Abstract The domain structure and miscibility in the solid state of a series of blends of styrene-butadiene-styrene (SBS) block copolymers and styrene-glycidyl methacrylate (PS-GMA) statistical copolymers with varying molecular weights and compositions were studied using small angle X-ray scattering and dynamic mechanical thermal analysis. Depending on the molecular characteristics of each component, different types and degrees of solubilization of PS-GMA in SBS were found which, in addition to the initially SBS phase morphology, lead to materials with multiphase domain morphologies with differences in size and structure. The degree of solubilization of PS-GMA into the PS domains of SBS was found to be higher for blends containing PS-GMA with lower molecular weight (Mw = 18 100 g mol,1) and lower GMA content (1 wt%) and/or for SBS with higher PS content (39 wt%) and longer PS blocks (Mw = 19 600 g mol,1). Localized solubilization of PS-GMA in the middle of PS domains of SBS was found to be the most probable to occur for the systems under study, causing swelling of PS domains. However, uniform solubilization was also observed for SBS/PS-GMA blends containing SBS with composition in the range of a morphological transition (PS block Mw = 19 600 g mol,1 and 39 wt% of PS) causing a morphological transition in the SBS copolymer (cylinder to lamella). Copyright © 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd [source] |