Lower Flow Rate (lower + flow_rate)

Distribution by Scientific Domains


Selected Abstracts


Hydrodynamics and mass transfer of gas,liquid flow in a falling film microreactor

AICHE JOURNAL, Issue 5 2009
Haocui Zhang
Abstract In this article, flow pattern of liquid film and flooding phenomena of a falling film microreactor (FFMR) were investigated using high-speed CCD camera. Three flow regimes were identified as "corner rivulet flow," "falling film flow with dry patches," and "complete falling film flow" when liquid flow rate increased gradually. Besides liquid film flow in microchannels, a flooding presented as the flow of liquid along the side wall of gas chamber in FFMR was found at high liquid flow rate. Moreover, the flooding could be initiated at lower flow rate with the reduction of the depth of the gas chamber. CO2 absorption was then investigated under the complete falling flow regime in FFMR, where the effects of liquid viscosity and surface tension on mass transfer were demonstrated. The experimental results indicate that kL is in the range of 5.83 to 13.4 × 10,5 m s,1 and an empirical correlation was proposed to predict kL in FFMR. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


High-performance separation of small inorganic anions on a methacrylate-based polymer monolith grafted with [2(methacryloyloxy)ethyl] trimethylammonium chloride

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 15-16 2009
Damian Connolly
Abstract A glycidyl methacrylate- co -ethylene dimethacrylate monolith in capillary format (100 ,m/id) has been grafted with chains of poly([2(methacryloyloxy)ethyl] trimethylammonium chloride (poly-META) and applied to the ion-chromatographic separation of selected inorganic anions. Grafting chains of META onto the generic monolithic scaffold resulted in a monolith with ,electrolyte responsive flow permeability', which manifested as increased permeability in the presence of electrolyte solutions. Using an eluent of 2 mM sodium benzoate and on-column contactless conductivity detection, a test mixture of six common anions was isocratically separated and detected within 12 min, with the first four anions baseline resolved within a retention time window of 3.2 min. Retention time precision was ,1.2% for all anions tested. Separation efficiencies of 15 000 N/m were achieved for fluoride at 1 ,L/min, with column efficiencies up to 29 500 N/m obtained at a lower flow rate of 100 nL/min. Furthermore, repeatability of the column modification procedure using photografting methods was acceptable, with retention times between replicate columns matching within 9%. [source]


Blue-shift of absorption edge in LaTiO2N by controlling the anion nonstoichiometry

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 11 2006
Toshihiro Moriga
Abstract The perovskite-type oxynitride LaTiO2N was prepared by heating an oxide precursor at 950 °C for 5 hours under NH3 atmosphere at a flow rate of 1 dm3/min. The precursor was prepared by the polymerized complex method. The oxynitride obtained was almost stoichiometric, LaTi(O0.68N0.32)2.9, with a reddish orange color. The oxynitride was successively annealed at 950 °C for 3 hours under a NH3 atmosphere at flow rates of 50 cm3/min, 30 cm3/min and 10 cm3/min, respectively. The color and composition varied from yellow LaTi(O0.89N0.11)2.8 through green-yellow LaTi(O0.93N0.07)2.9 to light-blue LaTi(O0.98N0.02)2.9 in accordance with the decreased flow rate. The absorption edges varied from 2.28 eV for the reddish orange, 2.56 eV for the yellow, 3.17 eV for the green-yellow, to 3.44 eV for the light-blue oxynitrides. Annealing under NH3 is therefore effective in color tuning, mainly resulting in a blue-shift of the absorption edge. DV-X, calculations support the conclusion that the lower flow rate of NH3 led to a lower amount of nitrogen and higher oxygen levels in the oxynitrides. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Elongational viscosity of LDPEs and polystyrenes using entrance loss data

POLYMER ENGINEERING & SCIENCE, Issue 2 2008
K. Walczak
For two low-density polyethylenes and two polystyrenes, axisymmetric and planar elongational viscosities are estimated using entrance loss data from capillary and slit rheometers, respectively. The elongational viscosity is estimated by optimizing the values of various parameters in the Sarkar,Gupta elongational viscosity model such that the entrance loss predicted by a finite element simulation agrees with the corresponding experimental data. The predicted entrance loss is in good agreement with the experimental data at high flow rates. The difference in the experimental and predicted entrance loss at lower flow rates might have been caused by large error in the experimental data in this range. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers [source]


Modification of a commercial electrospray nebulizer for operation in a liquid chromatography/mass spectrometry system at flow rates in the low,µL/min range

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2001
Alain Carrier
A simple and inexpensive approach to convert the electrospray nebulizer of a commercial liquid chromatography/mass spectrometry (LC/MS) system (HP 1100) to accommodate lower flow rates has been proposed and evaluated. This modification consists of simply replacing the nebulizer needle by a commercially available stainless steel needle with a smaller internal diameter. Experiments were conducted in order to optimize operational parameters. Using two different internal diameter needle sizes, flow rates ranging from 1 to 250,µL/min could be accommodated. The modification presented allows an extension of the range of compatible flow rates without major modification of the standard design of the interface. Copyright © 2001 John Wiley & Sons, Ltd. [source]