Low Thermal Conductivity (low + thermal_conductivity)

Distribution by Scientific Domains


Selected Abstracts


Flexible Hybrid Semiconductors with Low Thermal Conductivity: The Role of Organic Diamines,

ANGEWANDTE CHEMIE, Issue 42 2009
Xiaoying Huang Dr.
Flexible Leiter: Einzigartig sind die hier vorgestellten Halbleiterkristalle aus einer organisch-anorganischen Hybridverbindung wegen ihrer Flexibilität und niedrigen thermischen Leitfähigkeit. Die Hybride bestehen aus ZnTe-Schichten, die durch unterschiedliche Diamine verknüpft sind (im Bild ist ein Beispiel zu sehen; C,graue, N,blaue, Te,rote, Zn,hellblaue Kugeln). [source]


Heat transfer enhancement of fatty acids when used as PCMs in thermal energy storage

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2008
Muhsin Mazman
Abstract Phase change materials (PCM) used in latent heat storage systems usually have very low thermal conductivities. This is a major drawback in maintaining the required heat exchange rate between PCM and heat transfer fluid. This paper investigates the enhancement of the heat transfer between PCM and heat transfer fluid, using high thermal conductivity as additives like stainless steel pieces, copper pieces and graphite,PCM composite material. In the experiments, palmitic,lauric acid (80:20) (PL) and stearic,myristic acid (80:20) (SM) were used as PCMs. Test results show that heat transfer enhancement of copper pieces was better at 0.05 Ls,1 flow rate compared to 0.025 Ls,1. Using copper as an additive increased the heat transfer rate 1.7 times for melting and 3.8 times for freezing when flow rate was 0.050 Ls,1. Decreasing the flow rate from 0.050 to 0.025 Ls,1, increased the melting times 1.3 times and freezing times 1.8 times, decreasing heat transfer rates accordingly. The best result of heat transfer enhancement was observed for the PCM,graphite composite. However, changing the flow rate did not affect the heat transfer rate when graphite was used as additive. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Crystalline , -Alumina Deposited in an Industrial Coating Unit for Demanding Turning Operations,

ADVANCED ENGINEERING MATERIALS, Issue 1-2 2010
Kirsten Bobzin
Crystalline PVD ,-Al2O3 - coatings offer great potential for their use in high-speed cutting operations. They promise high hot hardness and high oxidation resistance at elevated temperatures. This is important for coatings that are used for machining of materials with low thermal conductivity such as stainless steel or Inconel 718 because heat generated during cutting can barely be dissipated by the chip. Because of the prevailing bonding forces of alumina, adhesion-related sticking can be reduced even for dry cutting. Furthermore, the high formation enthalpy of alumina prevents chemical reactions with frictional partners. The present work gives an overview of the deposition of ,-Al2O3 thin films on WC/Co-cutting inserts by using pulsed MSIP (magnetron sputter ion plating) PVD technology. To improve adhesion, a (Ti,Al)N bond coat was employed. The samples were analyzed using common thin film test equipment. Cutting tests and pin-on-disk examinations were carried out to test the coating's performance. For turning operations, the difficult-to-machine austenitic steel 1.4301 (X5CrNi18-10) was used. In comparison to a state-of-the-art (Ti,Al)N coating, (Ti,Al)N/,-Al2O3 showed a longer tool life. [source]


Nanostructured Bulk Silicon as an Effective Thermoelectric Material

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
Sabah K. Bux
Abstract Thermoelectric power sources have consistently demonstrated their extraordinary reliability and longevity for deep space missions and small unattended terrestrial systems. However, more efficient bulk materials and practical devices are required to improve existing technology and expand into large-scale waste heat recovery applications. Research has long focused on complex compounds that best combine the electrical properties of degenerate semiconductors with the low thermal conductivity of glassy materials. Recently it has been found that nanostructuring is an effective method to decouple electrical and thermal transport parameters. Dramatic reductions in the lattice thermal conductivity are achieved by nanostructuring bulk silicon with limited degradation in its electron mobility, leading to an unprecedented increase by a factor of 3.5 in its performance over that of the parent single-crystal material. This makes nanostructured bulk (nano-bulk) Si an effective high temperature thermoelectric material that performs at about 70% the level of state-of-the-art Si0.8Ge0.2 but without the need for expensive and rare Ge. [source]


Investigation of three-dimensional heat and mass transfer in a metal hydride reactor

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2002
Mahmut D. Mat
A mathematical model for three-dimensional heat and mass transfer in metal,hydrogen reactor is presented. The model considers three-dimensional complex heat, and mass transfer and chemical reaction in the reactor. The main parameter in hydriding processes is found to be the equilibrium pressure, which strongly depends on temperature. Hydride formation enhanced at regions with lower equilibrium pressure. Hydriding processes are shown to be two dimensional for the system considered in this study. Effects of heat transfer rate and R/H (radius to height) ratio on hydride formation are investigated. Hydride formation increases significantly with larger heat transfer rate from the boundary walls, however after a certain heat transfer rate, the increase in formation rate is found to be not significant, due to the low thermal conductivity of the metal-hydride systems. The estimated results agree satisfactorily with the experimental data in the literature. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Nanostructured thermoelectric oxides with low thermal conductivity

PHYSICA STATUS SOLIDI - RAPID RESEARCH LETTERS, Issue 6 2007
A. Weidenkaff
Abstract Complex metal oxides, such as e.g. perovskite-type phases are developed as potential functional materials to improve the efficiency of thermoelectric converters. Among those, cobaltates with p-type conductivity and n-type manganates are considered for the realisation of a ceramic thermoelectric converter. Sintered pellets with the composition AMO3,, (A = Ln, RE; M = Co, Mn, Ni, Ti) and "Ca3Co4O9 derivates" were synthesized and characterised concerning their thermoelectric properties in a broad temperature range. It was found that the Seebeck coefficient and the electrical conductivity do not depend on the dimensions of the crystallites, while the heat conductivity can be substantially lowered by decreasing the size of the crystalline domains in these systems. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Laser local oxidation of porous silicon: a FTIR spectroscopy investigation

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2005
M. Rocchia
Abstract The local oxidation of porous silicon (PS), induced by a focused laser beam, could represent an alternative method for patterning PS through direct writing. Important phase changes take place on PS when irradiated by a focused laser beam and moreover a complete confinement of the oxidized areas can be achieved due to the very low thermal conductivity of PS. We present a detailed Fourier Transform InfraRed (FTIR) study of the irradiated areas to understand the degree of oxidation and the type of oxide obtained at different laser powers. An interpretation of the low wavenumber range, below 1300 cm,1, in terms of Fröhlich interactions will be discussed. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Order,disorder transition in monoclinic sulfur: a precise structural study by high-resolution neutron powder diffraction

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 6 2006
W. I. F. David
High-resolution neutron powder diffraction has been used in order to characterize the order,disorder transition in monoclinic cyclo-octasulphur. Rapid data collection and the novel use of geometrically constrained refinements has enabled a direct and precise determination of the order parameter, based on molecular site occupancies, to be made. The transition is critical and continuous; with a transition temperature, Tc = 198.4,(3),K, and a critical exponent, , = 0.28,(3), which is indicative of three-dimensional ordering. Difficulties encountered as a consequence of the low thermal conductivity of the sample are discussed. [source]


Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina

BASIN RESEARCH, Issue 4 2003
Edward R. Sobel
Deciphering the evolution of mountain belts requires information on the temporal history of both topographic growth and erosion. The exhumation rate of a mountain range undergoing shortening is related to the erodability of the uplifting range as well as the efficiency of erosion, which partly depends on the available precipitation. Young, rapidly deposited sediments have low thermal conductivity and are readily eroded, in contrast to underlying resistant basement rocks that have a higher thermal conductivity. Apatite fission-track thermochronology can quantify cooling; thermal models constrain the relationship between this cooling and exhumation. By utilizing geological relations for a datum, we can examine the evolution of rock uplift, surface uplift and exhumation. In the northern Sierras Pampeanas of Argentina, a young sedimentary basin that overlay resistant crystalline basement prior to rapid exhumation provides an ideal setting to examine the effect of contrasting thermal and erosional regimes. There, tectonically active reverse-fault-bounded blocks partly preserve a basement peneplain at elevations in excess of 4500 m. Prior to exhumation, the two study areas were covered by 1000 and 1600 m of recently deposited sediments; this sequence begins with shallow marine deposits immediately overlying the regional erosion surface. Apatite fission-track data were obtained from vertical transects in the Calchaquíes and Aconquija ranges. At Cumbres Calchaquíes, erosion leading to the development of the peneplain commenced in the Cretaceous, probably as a result of rift-shoulder uplift. In contrast, Sierra Aconquija cooled rapidly between 5.5 and 4.5 Myr. At the onset of this rapid exhumation, the sediment was quickly removed, causing fast cooling, but relatively slow rates of surface uplift. Syntectonic conglomerates were produced when faulting exposed resistant bedrock; this change in rock erodability led to enhanced surface uplift rates, but decreased exhumation rates. The creation of an orographic barrier after the range had attained sufficient elevation further decreased exhumation rates and increased surface uplift rates. Differences in the magnitude of exhumation at the two transects are related to both differences in the thickness of the sedimentary basin prior to exhumation and differences in the effective precipitation due to an orographic barrier in the foreland and hence differences in the magnitude of headward erosion. [source]