Low pH Values (low + ph_value)

Distribution by Scientific Domains


Selected Abstracts


Anaerobic co-digestion of potato processing wastewater with pig slurry and abattoir wastewater

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 12 2008
Maria Monou
Abstract BACKGROUND: Small-scale experimental investigations were carried out on the anaerobic digestion of potato processing wastewater and its co-digestion with pig slurry and/or abattoir wastewater. A simple and rapid procedure was used to determine the suitability of these wastes for digestion. RESULTS: During the initial 5-day acclimation phase, the seed (digested brewery waste) was replaced by the test waste before allowing the tests to incubate without further addition, where methanogenesis was measured. Although potato processing wastewater has low pH, with high fat content treatment via anaerobic digestion was still feasible in spite of low methane production. Co-digestion with pig slurry and abattoir wastewater was therefore investigated to enhance the process. Pig slurry improved the process, which, when co-digested with potato processing wastewater in equal ratio achieved 72% volatile solids removal, 35 mL average daily biogas production and 32% maximum methane content in 22 days (following the acclimation period). Co-digestion with abattoir wastewater did not improve the digestion process due to poor buffering and low pH value. CONCLUSION: Anaerobic co-digestion may be a feasible treatment option for industrial bio-wastes and livestock wastes produced in Cyprus and indeed in similar other countries of comparable market size and activities. Copyright © 2008 Society of Chemical Industry [source]


Soil biochemical and chemical changes in relation to mature spruce (Picea abies) forest conversion and regeneration

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2003
Zheke Zhong
Abstract To investigate soil changes from forest conversion and regeneration, soil net N mineralization, potential nitrification, microbial biomass N, L-asparaginase, L-glutaminase, and other chemical and biological properties were examined in three adjacent stands: mature pure and dense Norway spruce (Picea abies (L.) Karst) (110 yr) (stand I), mature Norway spruce mixed with young beech (Fagus sylvatica) (5 yr) (stand II), and young Norway spruce (16 yr) (stand III). The latter two stands were converted or regenerated from the mature Norway spruce stand as former. The studied soils were characterized as having a very low pH value (2.9 , 3.5 in 0.01 M CaCl2), a high total N content (1.06 , 1.94,%), a high metabolic quotient (qCO2) (6.7 , 16.9 g CO2 kg,1 h,1), a low microbial biomass N (1.1 , 3.3,% of total N, except LOf1 at stand III), and a relatively high net N mineralization (175 , 1213 mg N kg,1 in LOf1 and Of2, 4 weeks incubation). In the converted forest (stand II), C,:,N ratio and qCO2 values in the LOf1 layer decreased significantly, and base saturation and exchangeable Ca showed a somewhat increment in mineral soil. In the regenerated forest (stand III), the total N storage in the surface layers decreased by 30,%. The surface organic layers (LOf1, Of2) possessed a very high net N mineralization (1.5 , 3 times higher than those in other two stands), high microbial biomass (C, N), and high basal respiration and qCO2 values. Meanwhile, in the Oh layer, the base saturation and the exchangeable Ca decreased. All studied substrates showed little net nitrification after the first period of incubation (2 weeks). In the later period of incubation (7 , 11 weeks), a considerable amount of NO3 -N accumulated (20 , 100,% of total cumulative mineral N) in the soils from the two pure spruce stands (I, III). In contrast, there was almost no net NO3 -N accumulation in the soils from the converted mixed stand (II) indicating that there was a difference in microorganisms in the two types of forest ecosystems. Soil microbial biomass N, mineral N, net N mineralization, L-asparaginase, and L-glutaminase were correlated and associated with forest management. Chemische und biochemische Veränderungen der Bodeneigenschaften durch Verjüngung und Waldumbau eines Fichtenaltbestandes Um die durch den Waldumbau und die Regeneration bedingten Standortsveränderungen zu untersuchen, wurden die Netto-Stickstoffmineralisierung, die potenzielle Nitrifikation, der mikrobiell gebundene Stickstoff (Nmic), L-Asparaginase, L-Glutaminase sowie weitere chemische und biologische Parameter an drei benachbarten Standorten untersucht: Standort I, reiner Fichtenaltbestand (Picea abies (L.) Karst ,110 Jahre); Standort II, Fichtenaltbestand mit Buchenunterbau (Fagus sylvatica , 5 Jahre); Standort III, reine Fichtenaufforstung (16 Jahre). Die Standorte II und III entstanden infolge des Waldumbaus aus reinen Fichtenaltbeständen. Die untersuchten Böden sind gekennzeichnet durch sehr niedrige pH-Werte (pH(H2O) 3, 7 , 4, 2, pH (CaCl2) 2, 9 , 3, 5), hohe Gesamtstickstoffgehalte (1, 06 , 1, 94,%), hohe metabolische Quotienten (6, 7,16, 9g CO2 kg,1 h,1), geringe Nmic -Gehalte (1, 1 , 3, 3,% des Gesamt-N, ausgenommen LOf1 von Standort III) und eine relativ hohe N-Nettomineralisation (175 , 1213 mg N Kg,1 in LOf1 und Of2, nach 4 Wochen Inkubation). Am Standort II nahm das C,:,N-Verhältnis und der qCO2 im LOf1 -Horizont deutlich ab, wohingegen der Gehalt an austauschbarem Ca sowie die Basensättigung im Mineralboden geringfügig zunahmen. Am Standort III nahm der N-Vorrat (Auflagehumus + Mineralboden 0 , 10,cm) um 30,% ab. In den LOf1 - und Of2 -Lagen des Auflagehumus dieses Standortes traten eine hohe N-Nettomineralisation (1, 5- bis 3fach höher als in den Standorten I und II), hohe Gehalte an mikrobiell gebundenem C und N, eine erhöhte Basalatmung sowie erhöhte qCO2 -Werte auf. In den Oh-Lagen hingegen nahm die Basensättigung ab. Alle untersuchten Standorte zeigten in der ersten Periode der Inkubation (0 bis 2 Wochen) eine geringe Netto-Nitrifikation. An den Standorten I und III fand in der späteren Periode (7. bis 11. Woche) eine Anreicherung an NO3 (20 , 100,% des gesamten mineralischen N-Vorrates) statt. Im Gegensatz dazu wurde am Standort II keine NO3 -N- Anreicherung festgestellt. Dies deutet auf einen Unterschied in der Zusammensetzung der mikrobiellen Gemeinschaften in den zwei verschiedenen Forstökosystemen hin. Nmic, N-Nettomineralisation, L-Asparaginase und L-Glutaminase korrelieren miteinander und zeigen eine enge Beziehung zu den Bewirtschaftungsformen. [source]


Multistimuli responsive micelles based on well-defined amphiphilic comb poly(ether amine) (acPEA)

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2010
Chunfeng Di
Abstract A series of well-defined amphiphilic comb poly (ether amine)s (acPEAs) were successfully synthesized through nucleophilic addition/ring-opening reaction of commercial available poly(propylene glycol) (PPO) diglycidyl ether and Jeffamine L100, followed by esterification of hydroxyl groups in backbone by alkyl carboxylic acid with different chain length. acPEAs are comprised of hydrophilic short PEO chains and hydrophobic alkyl chains as comb chains, which are grafted on PPO backbone alternately to form well-defined structure. With the very low critical micelle concentration (CMC) of around 3.0 × 10,3 g/L, the obtained acPEAs can self-assemble into stable nanomicelles, whose aggregation is responsive to temperature, pH, and ionic strength with tunable cloud point (CP). The CP of acPEAs' aqueous solution increases with the decrease of the length of graft alkyl chains, the decrease of pH value, and the decrease of ionic strength. A transition behavior in the responsive aggregation of micelles formed by acPEA8 and acPEA10 in aqueous solution, especially at low pH value (<7.0), was observed, which was also revealed by DLS results. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3468,3475, 2010 [source]


Functional colloidal particles stabilized by layered silicate with hydrophilic face and hydrophobic polymer brushes

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2009
Yani Wu
Abstract In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X-ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay-PS particles could be obtained in different solvents. In water, clay-PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay-PS particles formed face-to-face structure. Narrowly dispersed PS colloidal particles stabilized by clay-PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2-vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535,1543, 2009 [source]


Raman microspectroscopic study on low-pH-induced DNA structural transitions in the presence of magnesium ions

JOURNAL OF RAMAN SPECTROSCOPY, Issue 10 2002
C. M. Muntean
Low-pH-induced DNA structural changes were investigated in the pH range 6.8,2.10 by Raman microspectroscopy. Measurements were carried out on calf thymus DNA in the presence of low concentrations of Mg2+ ions. Vibrational spectra are presented in the wavenumber region 500,1650 cm,1. Large changes in the Raman spectra of calf-thymus DNA were observed on lowering the pH value. These are due to protonation and unstacking of the DNA bases during DNA melting and also to changes in the DNA backbone conformation. The intensities of the Raman bands of guanine (681 cm,1), adenine (728 cm,1), thymine (752 cm,1) and cytosine (785 cm,1), typical of the C2,- endo - anti conformation of B-DNA, are discussed. The B-form marker near 835 cm,1 and the base vibrations in the higher wavenumber region (1200,1680 cm,1) are analysed. Effects of low pH value upon the protonation mechanism of opening AT and changing the protonation of GC base pairs in DNA are discussed. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Reversible Immobilization of Invertase on Sepabeads Coated with Polyethyleneimine: Optimization of the Biocatalyst's Stability

BIOTECHNOLOGY PROGRESS, Issue 6 2002
Rodrigo Torres
Invertase from S. cerevisiae has been immobilized by ionic adsorption on Sepabeads fully coated with PEI. The enzyme was strongly adsorbed on the support (no desorption of the invertase was found under conditions in which all of the enzyme was released from conventional anionic exchanger supports (e.g., DEAE-agarose)). Nevertheless, the enzyme could still be desorbed after its inactivation, and new fresh enzyme could be adsorbed on the supports without detrimental effects on enzyme loading. This is a multimeric enzyme, its minimal oligomerization active state being the dimer, but under certain conditions of pH and concentration it may give larger multimers. Very interestingly, results suggested that the adsorption of the enzyme on this large and flexible polymeric bed was able to freeze some of the different oligomeric structures of the enzyme. Thus, we have found that the enzyme immobilized at certain pH values (pH 8.5) and high enzyme concentration, in which the main enzyme structure is the tetramer, was more stable than immobilized preparations produced in conditions under which oligomerization was not favorable (dimers at low enzyme concentration) or it was too high (e.g., hexamers-octamers at low pH value). The optimal enzyme preparation remained fully active after a 15-day incubation at 50 °C and pH 4.5 (conditions of standard industrial use) and presented an optimal temperature approximately 5 °C higher than that of soluble enzyme. [source]


Reflux and pH: ,alkaline' components are not neutralized by gastric pH variations

DISEASES OF THE ESOPHAGUS, Issue 1 2000
P. Bechi
The ability of the ,alkaline' components of reflux to cause harm in vivo is still open to debate, although these components have been shown in vitro to be capable of damaging the mucosa. The precipitation of bile acids and lysolecithin that occurs at low pH values is the main reason for questioning in vivo mucosal damage. This study was undertaken to determine the composition of gastric aspirates at different original pH values and the degree of solubility of the alkaline components when pH modifications are artificially induced. The samples for chemical analysis were collected from indwelling nasogastric tubes after surgical procedures that did not involve the upper gastrointestinal tract. Bile acid and lysolecithin concentrations were assessed by means of dedicated methods. Thirty-five samples were available for bile acid evaluation and 27 for lysolecithin evaluation. Bile acid and lysolecithin assessments were repeated after pH adjustment at 2, 3.5, 5.5 and 7. For easier assessment of the results, three ranges of the original pH were selected (pH,<,2, 2 , pH < 5, pH , 5). For each pH range, results were pooled together and compared with those in the other pH ranges. Bile acid concentrations were 113 ± 48, 339 ± 90 and 900 ± 303 (mean ± s.e.m. ,mol/L), respectively, in the three groups selected on account of the different original pH values. Differences were significant (p < 0.001). Both taurine- and glycine-conjugated bile acids were represented even at pH < 2. No major differences were observed in bile acid concentration with the artificially induced pH variations. Lysolecithin concentrations were 5.99 ± 3.27, 30.80 ± 8.43 and 108.37 ± 22.17 (mean ± SEM ,g/ml), respectively, in the three groups selected on account of the different original pH ranges. Differences were significant (p < 0.001). No significant differences in lysolecithin concentration were detected with the artificially induced pH variations. In conclusion, both bile acids and lysolecithin are naturally represented in the gastric environment even at very low pH values, although their concentrations decrease on lowering of the naturally occurring pH. Given the concentration variability of bile acids and lysolecithin, further studies are needed to assess the minimal concentration capable of mucosal damage in vivo. [source]


Molecular Tailored Histidine-Based Complexing Surfactants: From Micelles to Hydrogels

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 23 2009
Patrick Gizzi
Abstract Novel histidine-based complexing surfactants, designed as AA-His-EOm -Cn, containing trifunctional moduli (peptidic/hydrophilic/hydrophobic) were synthesized by a modular step-by-step procedure, which allowed easy structural changes, and consequently correlations between their molecular structures and their self-assembling properties could be established. Thus, micelles or hydrogels could be obtained by simply modifying the hydrophobic tail lengths or the junction between the different moduli of the designed compounds. At low pH values, all compounds were surface active in aqueous solutions. At higher pH values, in the range 8,10, micellization took place for decyl compounds (n = 10), whereas hydrogelation occurred for longer chain lengths (n = 12, 14), and this, at very-low concentrations of surfactant (<0.3 wt.-%), could thus act as low molecular weight gelator (LMWG). The driving forces for gel formation were noncovalent intermolecular interactions such as ,-stacking and hydrophobic and hydrogen-bonding interactions.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Metal-complex formation and DNA interaction of 5, 10,15,20-tetrakis(1-methyl-4-pyridiyl)-porphine: Study of the mechanistic aspects

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 2 2010
Sabriye Aydinoglu
The macrocyclic porphyrin 5,10,15,20-tetrakis(1-methyl-4-pyridiyl)-porphine is studied in its ability to coordinate Cu(II) even at very low pH values and to interact, as a copper complex, with calf-thymus (CT-DNA). The kinetics and equilibria for metal-ligand complexes formation are spectrophotometrically studied, particularly focussing on the mechanistic information provided by the kinetic approach. The rate constants of complex formation is much lower than that of water exchange at Cu(II); this behavior is ascribed to an equilibrium between two porphyrin populations, only one of them being reactive. Concerning the interaction of the copper,porphyrin complex (D) with CT-DNA, it has been found that the complex binds to G,C base pairs by intercalation while forms external complex with the A,T base pairs. The kinetic results agree with a reaction mechanism that takes into account the slow shuffling from an AT-bound form (DAT) to a GC-bound form (DGC) of the copper complex (D), finally leading to a more stable DGC* intercalated form. Kinetic and equilibrium parameters for the copper complex binding to the nucleic acid are obtained, and the binding mechanism is discussed. A mechanism is proposed where D reacts simultaneously with (G,C) and (A,T) base pairs. The resulting bound forms interconvert according to a "shuffling" process, which involves formation of an intermediate (DGC) form. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 79,89, 2010 [source]


Effect of culture conditions on lactic acid production of Tetragenococcus species

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2004
T. Kobayashi
Abstract Aims:, To investigate the effects of the salt concentration, incubation temperature and initial pH of the medium on the fermentative ability of the halophilic lactic acid bacteria, Tetragenococcus muriaticus and T. halophilus. Method and Results:, The growth, lactic acid production and pH reduction ability of five strains of T. muriaticus and T. halophilus in MRS broth medium under various culture conditions such as salt concentration (3, 7, 15 and 23% NaCl), temperature (20, 30 and 40°C), and initial medium pH (5·8, 6·5 and 7·5) were investigated. Those of T. halophilus were seriously affected by a high salinity (23% NaCl); in contrast, those of T. muriaticus were affected by a low initial pH (5·8). Conclusions:, The results indicate that high saline concentrations and low pH values have significant impact on the growth, lactic acid production and pH reduction ability of T. halophilus and T. muriaticus, respectively. Significance and Impact of the Study:, This study appears to be important in biopreservation during the manufacture of fermented food products. Both T. muriaticus and T. halophilus may support each other in reducing pH in hypersaline or low pH environment. To our knowledge, this is the first report on the fermentation ability of T. muriaticus. [source]


Influence of acid treatment on the surface activity and mass transfer inhibition of a splittable surfactant

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2004
Yuh-Lang Lee
Abstract A splittable surfactant, Triton SP-190, was used to evaluate the effects of acid treatment on the mass transfer rate of an extraction process and on the interfacial tension-lowering activity of a system containing this surfactant. Equilibrium and dynamic interfacial tensions at the interface of CCl4 and the aqueous phase containing surfactant were measured by using pendent drop tensiometry enhanced by video digitization. A single-drop extraction apparatus was used to obtain the extraction percentage of acetic acid from the dispersed CCl4 droplets to the aqueous phase. The results indicate that the inorganic acid treatment can inhibit the dynamic and equilibrium interfacial tension-lowering activity of Triton SP-190. The mass transfer resistance induced by the addition of Triton SP-190 can also be reduced by the pre-treatment of acid. The effectiveness of acid treatment on both properties was greater at low pH values, lower surfactant concentrations, and longer treatment times. With HCl treatment, the equilibrium interfacial tension was not able to increase to the value of a surfactant-free system, but approached a maximum value which was independent of the pH value, but dependent on surfactant concentration. On the contrary, the extraction percentage, which has decreased due to the presence of surfactant, can be recovered completely to that of a surfactant-free system by acid treatment. The acid-treatment time required to achieve a significant recovery of mass transfer rate was much longer than that required to recover the interfacial tension. The present results also demonstrate that the constituents contained in an acid-treatment system had different effectiveness in affecting the interfacial tension and mass transfer rate due to the different mechanisms involved. Copyright © 2004 Society of Chemical Industry [source]


Stability of oleuropein in the human proximal gut

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2009
Constantinos Markopoulos
Abstract Objectives We aimed to assess the intralumenal stability of oleuropein in human gastric and small intestinal contents. We additionally aimed to assess the stability characteristics of oleuropein in media simulating the intralumenal conditions. Methods The intralumenal stability of oleuropein was assessed in aspirates from the stomach and the upper small intestine of healthy volunteers collected under both fasted and fed state conditions and in media simulating the intralumenal environment. Key findings Oleuropein degraded in aspirates collected in the fasted state. When the initial concentration was about 50 ,g/ml (close to expected intragastric concentration after single dose of commercially available products of oleuropein) the mean zero-order half-life of oleuropein in aspirates collected from the fasted small intestine was estimated to be 3.14 ± 0.08 h at 37°C (i.e. after oral administration in the fasted state, a substantial fraction of oleuropein degrades before reaching the intestinal mucosa). In contrast, oleuropein was stable in aspirates collected from the fed stomach; in small intestinal contents aspirated in the fed state the estimated zero-order degradation half-life was at least 12 h. Conclusions These data suggest that oleuropein should not have substantial intralumenal stability problems when administered in the fed state. Data collected in media simulating the intragastric and intraintestinal environment suggest that pH affects the stability of oleuropein only at low pH values (of about 2). At higher pHs degradation characteristics are at least partly affected by the presence of other scavengers of reactive oxygen species in the medium. [source]


Synthesis of PS and PDMAEMA mixed polymer brushes on the surface of layered silicate and their application in pickering suspension polymerization

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 24 2007
Yongfang Yang
Abstract An ammonium free radical initiator was ion exchanged onto the surface of clay layers. Polystyrene (PS) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) mixed polymer brushes on the surface of clay layers were prepared by in situ free radical polymerization. PS colloid particles armored by clay layers with mixed polymer brushes were prepared by Pickering suspension polymerization. Transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the colloid particles. Clay layers on the surface of PS colloid particles can be observed. Because of the cationic nature of the PDMAEMA brushes the colloid particles have positive zeta potentials at low pH values. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface of the colloid particles. N1s binding energy of PDMAEMA chains on the surface of clay layers was detected by XPS. The two peaks of the N1s binding energy indicate two different nitrogen environments on the surface of clay layers. The peak with a lower binding energy is characteristic of neutral nitrogen on PDMAEMA chains, and the peak with a higher binding energy is attributed to protonated nitrogen on PDMAEMA chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5759,5769, 2007 [source]


Effect of the stage of growth, wilting and inoculation in field pea (Pisum sativum L.) silages.

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 9 2006

Abstract The stage of growth, field wilting and inoculation with lactic acid bacteria (LAB) effects were studied by ensiling herbage of field pea (Pisum sativum L.) at four consecutive stages. Stands of semi-leafless field pea, sown in spring, were harvested at four progressive morphological stages (end of flowering, I; beginning of pod filling, II; advanced pod filling, III; beginning of ripening, IV). For each stage of growth, the herbage was field wilted to a dry matter (DM) content of 318, 300, 348 and 360 g kg,1 for stages I, II, III and IV, respectively. The unwilted and wilted herbages were ensiled in 5-L silos, with (I) and without (C) a LAB inoculant (Lactobacillus plantarum). High levels of ethanol, lactic acid and volatile fatty acids (VFA) were observed in all silages, facilitated by the high levels of water-soluble carbohydrates (WSC) at ensiling (from 111 to 198 g kg,1 DM). Despite the low pH values (4.3 and 4.1 for C and I silages, respectively), all the silages showed detectable levels of butyric acid. Field peas can be successfully ensiled after a short wilting period with reduced field curing and reduce DM losses onward from advanced pod filling stage, with the aid of LAB inoculum. Copyright © 2006 Society of Chemical Industry [source]


Anti- Helicobacter pylori activity of Lactobacillus delbrueckii subsp. bulgaricus strains: preliminary report

LETTERS IN APPLIED MICROBIOLOGY, Issue 5 2009
L. Boyanova
Abstract Aims:, To evaluate the activities of six Lactobacillus delbrueckii subsp. bulgaricus (LB) strains against 30 Helicobacter pylori strains by agar-well diffusion method. Methods and Results:, LB cultures [4 × 108,4 × 109 CFU ml,1) either were prepared in milk at their native pH, 3·8,5·0, or were adjusted to pH 6·4,7·7. At low and neutralized pH, LB strains inhibited the growth by 40,86·7% and 16·7,66·7% of H. pylori strains, respectively. LB activity was strain-dependent. At low and neutralized pH, one and five H. pylori strains, respectively, were not inhibited by any LB strain. LB2 and LB3, taken together, were active against most metronidazole and clarithromycin resistant strains. Conclusions:, All LB strains inhibited a number of H. pylori strains, including also antibiotic resistant strains. LB activity was strain-dependent and better at low pH. At low pH values, the most active LB strains were LB1, LB2 and LB3, inhibiting 86·7% of H. pylori strains, while at neutralized pH values, the most active LB strains were LB2 and LB3, inhibiting 53·3 and 66·7% of H. pylori strains, respectively. Significance and Impact of the Study:, LB could be utilized in the treatment or prophylaxis of H. pylori infection and warrants clinical investigations. [source]


Atomic-resolution crystal structure of thioredoxin from the acidophilic bacterium Acetobacter aceti

PROTEIN SCIENCE, Issue 1 2007
Courtney M. Starks
Abstract The crystal structure of thioredoxin (AaTrx) from the acetic acid bacterium Acetobacter aceti was determined at 1 Å resolution. This is currently the highest resolution crystal structure available for any thioredoxin. Thioredoxins facilitate thiol-disulfide exchange, a process that is expected to be slow at the low pH values encountered in the A. aceti cytoplasm. Despite the apparent need to function at low pH, neither the active site nor the surface charge distribution of AaTrx is notably different from that of Escherichia coli thioredoxin. Apparently the ancestral thioredoxin was sufficiently stable for use in A. aceti or the need to interact with multiple targets constrained the variation of surface residues. The AaTrx structure presented here provides a clear view of all ionizable protein moieties and waters, a first step in understanding how thiol-disulfide exchange might occur in a low pH cytoplasm, and is a basis for biophysical studies of the mechanism of acid-mediated unfolding. The high resolution of this structure should be useful for computational studies of thioredoxin function, protein structure and dynamics, and side-chain ionization. [source]


Effect of Illite Clay and Divalent Cations on Bitumen Recovery

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2006
Xinlin Ding
Abstract The adverse effect of illite clay on bitumen recovery was found to be related to its acidity. The addition of calcium or magnesium ions to the flotation deionized water had a marginal effect on bitumen recovery when measured using a Denver flotation cell. However, the co-addition of illite clay and divalent cations caused a significant reduction in bitumen recovery. The effect was found to be compounded at a lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to investigate the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a significant effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. On a trouvé que l'effet adverse de l'argile d'illite sur la récupération de bitume était relié à son acidité. L'ajout d'ions de calcium ou de magnésium à l'eau déionisée de flottation a un effet marginal sur la récupération de bitume lorsqu'on la mesure avec une cellule de flottation de Denver. Toutefois, l'ajout combiné d'argile d'illite et de cations divalents entraîne une réduction significative de la récupération de bitume. On a trouvé que les effets étaient combinés à une faible température de procédé et de faibles valeurs de pH. Les distributions de potentiel zéta des suspensions d'illite et des émulsions de bitume ont été mesurées individuellement et dans le mélange afin d'étudier les effets des cations divalents sur l'interaction entre le bitume et l'argile d'illite. La présence de 1 mM d'ions de calcium ou de magnésium dans l'eau déionisée a un effet significatif sur les interactions entre le bitume et l'argile d'illite. On n'a pas observé de couche de boues d'illite sur le bitume dans les mesures de distributions de potentiel zéta obtenues dans de l'eau de rejets alcaline. [source]


Decolorization of RR-120 Dye Using Ozone and Ozone/UV in a Semi-Batch Reactor

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2004
Mohammad Kazemi
Abstract Treatability of RR-120 aqueous dye solutions using O3 and O3/UV was studied in a bench scale set-up. Reduction in colour and chemical oxygen demand (COD) under various pH and initial dye concentrations were investigated. Pseudo first order reaction rate was satisfactorily used for kinetic interpretations in destruction of the dye. The results showed that decolorization with O3 was faster at neutral pH values. While use of UV had a small effect on ozonation at low pH values, UV radiation had a considerable effect at pH values of 7 and above. It was found that ozone utilization efficiency of higher than 95% could be attained in the experimental set up. On a étudié la possibilité de traitement de solutions aqueuses de colorant RR-120 à l'aide d'O3 et O3/UV dans un banc d'essai. La réduction de la demande chimique en oxygène (DCO) et en colorant a été étudiée pour différentes concentrations initiales de colorant. La vitesse de réaction du pseudo-premier ordre a été utilisée avec succès pour les interprétations cinétiques de la destruction du colorant. Les résultats montrent que la décoloration avec l'O3 est plus rapide à des valeurs de pH neutres. Alors que le recours aux UV a un faible effet sur l'ozonation à de faibles valeurs de pH, la radiation par UV a un effet considérable à des valeurs de pH de 7 et au-dessus. On a trouvé qu'une efficacité d'utilisation de l'ozone supérieure à 95% pouvait être atteinte dans l'installation expérimentale. [source]


Biocompatibility Assessment of Peritoneal Dialysis Solutions With a New In Vitro Model of Preconditioned Human HL60 Cells

ARTIFICIAL ORGANS, Issue 7 2009
Sebastian Koball
Abstract The purposes of this study were to test the human promyelocytic cell line HL60 for its usability as a new cell model for the immune barrier of the peritoneum, and to investigate the impact of different peritoneal dialysis (PD) solutions in the model. HL60 cells were stimulated by retinoic acid and recombinant human granulocyte and macrophage colony-stimulating factor to differentiate into neutrophilic granulocytes. Cells were incubated in different commercially available PD solutions. After a 4-h incubation, functional (chemiluminescence phagocytosis) and viability tests (Live-Dead, XTT) were performed. High glucose concentrations (>1.36%) and low pH values (<7.0) appeared to be detrimental for neutrophil functions and for neutrophil viability. There is a quantitative correlation between glucose concentration and the cytotoxicity of standard PD solutions (PD 1.36% glucose shows 42.6% higher chemiluminescence than PD 3.86% glucose [P < 0.05]). PD solution containing icodextrin shows 74.3% higher chemiluminescence than PD 3.86% glucose, and PD solution with amino acids shows 52.4% higher chemiluminescence than PD 3.86% glucose which is a sign for better biocompatibility in these tests (P < 0.05). The test system is useful for biocompatibility investigations of PD solutions and their effect on immune cells, for example, neutrophil granulocytes. It does not depend on donor variability and availability in comparison to models based on primary isolated leukocytes. [source]


Primary Steps of pH-Dependent Insulin Aggregation Kinetics are Governed by Conformational Flexibility

CHEMBIOCHEM, Issue 11 2009
Jürgen Haas Dr.
Abstract Insulin aggregation critically depends on pH. The underlying energetic and structural determinants are, however, unknown. Here, we measure the kinetics of the primary aggregation steps of the insulin monomer in vitro and relate it to its conformational flexibility. To assess these primary steps the monomer concentration was monitored by mass spectrometry at various pH values and aggregation products were imaged by atomic force microscopy. Lowering the pH from 3 to 1.6 markedly accelerated the observed aggregation kinetics. The influence of pH on the monomer structure and dynamics in solution was studied by molecular dynamics simulations, with the protonation states of the titrable groups obtained from electrostatic calculations. Reduced flexibility was observed for low pH values, mainly in the C terminus and in the helix of the B chain; these corresponded to an estimated entropy loss of 150 J,mol,1,K,1. The striking correlation between entropy loss and pH value is consistent with the observed kinetic traces. In analogy to the well-known , value analysis, this result allows the extraction of structural information about the rate determining transition state of the primary aggregation steps. In particular, we suggest that the residues in the helix of the B chain are involved in this transition state. [source]