Home About us Contact | |||
Low Loads (low + load)
Selected AbstractsOn functional motor adaptations: from the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck,shoulder regionACTA PHYSIOLOGICA, Issue 2010P. Madeleine Abstract Background:, Occupations characterized by a static low load and by repetitive actions show a high prevalence of work-related musculoskeletal disorders (WMSD) in the neck,shoulder region. Moreover, muscle fatigue and discomfort are reported to play a relevant initiating role in WMSD. Aims: To investigate relationships between altered sensory information, i.e. localized muscle fatigue, discomfort and pain and their associations to changes in motor control patterns. Materials & Methods:, In total 101 subjects participated. Questionnaires, subjective assessments of perceived exertion and pain intensity as well as surface electromyography (SEMG), mechanomyography (MMG), force and kinematics recordings were performed. Results:, Multi-channel SEMG and MMG revealed that the degree of heterogeneity of the trapezius muscle activation increased with fatigue. Further, the spatial organization of trapezius muscle activity changed in a dynamic manner during sustained contraction with acute experimental pain. A graduation of the motor changes in relation to the pain stage (acute, subchronic and chronic) and work experience were also found. The duration of the work task was shorter in presence of acute and chronic pain. Acute pain resulted in decreased activity of the painful muscle while in subchronic and chronic pain, a more static muscle activation was found. Posture and movement changed in the presence of neck,shoulder pain. Larger and smaller sizes of arm and trunk movement variability were respectively found in acute pain and subchronic/chronic pain. The size and structure of kinematics variability decreased also in the region of discomfort. Motor variability was higher in workers with high experience. Moreover, the pattern of activation of the upper trapezius muscle changed when receiving SEMG/MMG biofeedback during computer work. Discussion:, SEMG and MMG changes underlie functional mechanisms for the maintenance of force during fatiguing contraction and acute pain that may lead to the widespread pain seen in WMSD. A lack of harmonious muscle recruitment/derecruitment may play a role in pain transition. Motor behavior changed in shoulder pain conditions underlining that motor variability may play a role in the WMSD development as corroborated by the changes in kinematics variability seen with discomfort. This prognostic hypothesis was further, supported by the increased motor variability among workers with high experience. Conclusion:, Quantitative assessments of the functional motor adaptations can be a way to benchmark the pain status and help to indentify signs indicating WMSD development. Motor variability is an important characteristic in ergonomic situations. Future studies will investigate the potential benefit of inducing motor variability in occupational settings. [source] Characterisation of human soft palate muscles with respect to fibre types, myosins and capillary supplyJOURNAL OF ANATOMY, Issue 2 2000PER S. STÅL Four human soft palate muscles, and palatopharyngeus, the uvula, the levator and tensor veli palatini were examined using enzyme-histochemical, immunohistochemical and biochemical methods and compared with human limb and facial muscles. Our results showed that each palate muscle had a distinct morphological identity and that they generally shared more similarities with facial than limb muscles. The palatopharyngeus and uvula muscles contained 2 of the highest proportions of type II fibres ever reported for human muscles. In contrast, the levator and tensor veli palatini muscles contained predominantly type I fibres. A fetal myosin heavy chain isoform (MyHC), not usually found in normal adult limb muscles, was present in a small number of fibres in all palate muscles. The mean muscle fibre diameter was smaller than in limb muscles and the individual and intramuscular variability in diameter and shape was considerable. All palate muscles had a high capillary density and an unusually high mitochondrial enzyme activity in the type II fibres, in comparison with limb muscles. No ordinary muscle spindles were observed. The fibre type and MyHC composition indicate that the palatopharyngeus and uvula muscles are functionally involved in quick movements whereas the levator and tensor veli palatini muscles perform slower and more continuous contractions. The high aerobic capacity and the rich capillarisation suggest that the palate muscles are relatively fatigue resistant. Absence of ordinary muscle spindles indicates a special proprioceptive control system. The special morphology of the palate muscles may be partly related to the unique anatomy with only one skeletal insertion, a feature consistent with muscle work at low load and tension and which may influence the cytoarchitecture of these muscles. Other important factors determining the special morphological characteristics might be specific functional requirements, distinct embryological origin and phylogenetic factors. [source] Design Strategy of Minipig Molars Using Electronic Speckle Pattern Interferometry: Comparison of Deformation under Load between the Tooth-Mandible Complex and the Isolated Tooth,ADVANCED MATERIALS, Issue 4 2009Netta Lev-Tov Chattah Using electronic speckle pattern interferometry minipig molars were tested under load inside the bone socket and when embedded in a stiff polymer. It is demonstrated that the molar bends in the direction of the load in both configurations even at low loads. This shows that the intrinsic reaction of the tooth crown to load is complemented by the structures supporting the tooth. [source] Characterization and Investigation of the Tribological Properties of Sol,Gel Zirconia Thin FilmsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2002Yunxia Chen Sol,gel zirconia thin films were prepared by dip coating in an ethanol solution of zirconium oxychloride. The zirconia films consisted of a completely tetragonal phase and exhibited nanoscale uniformity. They displayed excellent antiwear and friction-reduction performance in sliding against steel. The friction coefficient (0.13,0.15) and the wear life over 5000 sliding cycles were recorded for the films at a sliding speed of 90 mm/min and a load of 0.5 N. The film was characterized by slight scuffing and abrasion at low loads and sliding speeds. [source] An ESCA study of the effectiveness of antiwear and extreme-pressure additives based on substituted phosphorodithioate derivatives, and a comparison with ZDDPLUBRICATION SCIENCE, Issue 2 2001M. C. Jain Ashless substituted dithiophosphoric acid derivatives (ADPs) are a new generation of multifunctional additives with promising antiwear (AW) and extreme-pressure (EP) characteristics. Three such additives synthesised in the authors' laboratory have been evaluated for their AW and EP properties by standard four-ball friction and wear tests. The friction-reducing properties of these additives were compared with those of a commercial zinc dialkyldithiophosphate (ZDDP). It was found that the phosphorodithioate compounds studied here possessed excellent AW/EP properties. Their AW characteristics were found to be comparable to those of ZDDP at low loads. However, at higher loads they show inferior AW characteristics in comparison to ZDDP. Nevertheless, ADP derived from cashew nut shell oil had a higher load-carrying capacity than ZDDP. The mechanism of the AW and EP behaviour exhibited by the different additives was investigated using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy (SEM) of the worn surfaces formed during friction. XPS and AES analyses of the worn surfaces reveal that the tribochemical film formed on the ADP-tested surfaces consisted mainly of metal phosphates and only a small amount of metal sulphides, even though the ADPs contained twice the number of sulphur atoms than phosphorus atoms. The ZDDP-tested surface showed a mixture of metal sulphides and metal phosphates. Alkylamino substitution appeared to have no significant effect on the AW/EP properties of the additive. XPS and AES analyses also revealed that the tribochemical film formed on an ADP-tested surface was thicker than that present on the ZDDP-tested surface at low loads, whereas at higher loads the reverse was true. The higher weld load obtained for the blend containing cashew nut shell oil-derived ADP is attributed to the thicker adsorbed reaction film formed on the surface due to the long alkyl groups present in the original additive structure. Short-chain alkyl groups, however, form only a thin adsorbed layer, which may get rubbed off during the friction at high load. The low sulphide formation on ADP-tested surfaces was attributed to the absence of any metal atom in the additive, which would help in the formation of metal sulphides during tribofragmentation and further tribochemical reactions. [source] Tribological behavior of pure and graphite-filled polyimides under atmospheric conditionsPOLYMER ENGINEERING & SCIENCE, Issue 8 2003P. Samyn As the use of common engineering plastics in tribological systems is limited to low sliding velocities and low loads because of creep and insufficient temperature resistance, there is increasing interest in application of high-performance polymers such as polyimides, characterized by their ability to maintain favorable mechanical properties up to their melting point. However, for practical design, tribotesting remains necessary for determination of the material's performance under a given contact situation. In this article, two commercially available polyimides are tested at relatively high sliding velocities and contact pressures under atmospheric conditions of temperature and humidity. A consistent overview of tendencies in friction and wear for pure polyimides as a function of applied normal loads and sliding velocities is given. Addition of 15% by weight graphite powder as internal solid lubricant strongly influences friction and wear. Its behavior is compared with pure polyimide grades and differences are discussed in relation with experimental measured bulk-temperatures. A linear temperature law is derived as a function of pv-levels and a steady-state condition is found at different temperature levels, in accordance with thermal conductivity of the polymer bulks. In case of graphite additives, a steady state in temperature coincides with the regime condition of wear rate. [source] |