Home About us Contact | |||
Low Detection Limit (low + detection_limit)
Selected AbstractsCatalytic Effect on Silver Electrodeposition of Gold Deposited on Carbon ElectrodesELECTROANALYSIS, Issue 19 2004Alfredo de, Escosura-Muñiz Abstract A new methodology, based on silver electrocatalytic deposition and designed to quantify gold deposited onto carbon paste electrode (CPE) and glassy carbon electrode (GCE), has been developed in this work. Silver (prepared in 1.0,M NH3) electrodeposition at ,0.13,V occurs only when gold is previously deposited at an adequate potential on the electrode surface for a fixed period of time. When a CPE is used as working electrode, an adequate oxidation of gold is necessary. This oxidation is carried out in both 0.1,M NaOH and 0.1,M H2SO4 at oxidation potentials. When a GCE is used as working electrode, the oxidation steps are not necessary. Moreover, a cleaning step in KCN, which removes gold from electrode surface, is included. To obtain reproducibility in the analytical signal, the surface of the electrodes must be suitably pretreated; this electrodic pretreatment depends on the kind of electrode used as working electrode. Low detection limits (5.0×10,10,M) for short gold deposition times (10,min for CPE and 5,min for GCE) were achieved with this novel methodology. Finally, sodium aurothiomalate can be quantified using silver electrocatalytic deposition and GCE as working electrode. Good linear relationship between silver anodic stripping peak and aurothiomalate concentration was found from 5.0×10,10,M to 1.0×10,8,M. [source] Calixarene/Nafion-Modified Bismuth-Film Electrodes for Adsorptive Stripping Voltammetric Determination of LeadELECTROANALYSIS, Issue 17-18 2009Ferenc Torma Abstract This paper presents an enhanced adsorptive stripping voltammetric procedure (AdSV) for the determination of Pb2+, which relies on the accumulation of the metals at a calixarene-based chemically modified bismuth-film electrode on glassy carbon substrate. Following the accumulation of the target metals at open circuit and a medium exchange, both the square wave anodic stripping detection of the metal ions and the in situ bismuth-film formation was performed simultaneously in a Bi3+ containing supporting electrolyte. The analysis of Pb2+ under optimized conditions resulted in stripping responses with good linearity (in the range 0.05,0.6,,M) and precision (RSD=1.12% at 0.2,,M Pb2+; n=10) and low detection limit (0.02,,g/L at 10,min preconcentration). The determination of Pb2+ (0.4,,M) at 100-fold excess of interfering ions (Cd2+, Cu2+ and Zn2+) yielded well resolved lead signal. The analytical utility of the method elaborated was tested in the analysis of trace Pb2+ in environmental water samples. [source] Synthesis and Characterization of MWNTs/Au NPs/HS(CH2)6Fc Nanocomposite: Application to Electrochemical Determination of Ascorbic AcidELECTROANALYSIS, Issue 16 2008Jian-Ding Qiu Abstract In this article, a detailed electrochemical study of a novel 6-ferrocenylhexanethiol (HS(CH2)6Fc) self-assembled multiwalled carbon nanotubes-Au nanoparticles (MWNTs/Au NPs) composite film was demonstrated. MWNTs/Au NPs were prepared by one-step in situ synthesis using linear polyethyleneimine (PEI) as bifunctionalizing agent. HS(CH2)6Fc, which acted as the redox mediator, was self-assembled to MWNTs/Au NPs via Au-S bond. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transformed infrared absorption spectroscopy (FT-IR), UV-visible absorption spectroscopy, and cyclic voltammetry were used to characterize the properties of the MWNTs/Au NPs/HS(CH2)6Fc nanocomposite. The preparation of the nanocomposite was very simple and effectively prevented the leakage of the HS(CH2)6Fc mediator during measurements. The electrooxidation of AA could be catalyzed by Fc/Fc+ couple as a mediator and had a higher electrochemical response due to the unique performance of MWNTs/Au NPs. The nanocomposite modified electrode exhibited excellent catalytic efficiency, high sensitivity, good stability, fast response (within 3,s) and low detection limit toward the oxidation of AA at a lower potential. [source] Synthesis of Carbon Nanofibers for Mediatorless Sensitive Detection of NADHELECTROANALYSIS, Issue 15 2008Yang Liu Abstract Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45,,M with a low detection limit of 20,nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE). Good selectivity was exhibited for the simultaneous detection of NADH and its common interferent of ascorbic acid (AA) by differential pulse voltammogram. The attractive electrochemical performance and the versatile preparation process of the CNF-CPE made it a promising candidate for designing effective NADH sensor. [source] Biosensor Based on Self-Assembling Glucose Oxidase and Dendrimer-Encapsulated Pt Nanoparticles on Carbon Nanotubes for Glucose DetectionELECTROANALYSIS, Issue 6 2007Lihuan Xu Abstract A novel amperometric glucose biosensor based on layer-by-layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt-DENs layer and an anionic GOx layer. Transmission electron microscopy images and ,-potentials proved the formation of layer-by-layer nanostructures on carboxyl-functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt-DENs toward H2O2 and special three-dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5,,M, a wide linear range of 5,,M,0.65,mM, a short response time (within 5,s), and high sensitivity (30.64,,A mM,1,cm,2) and stability (80% remains after 30 days). [source] Chitosan-Glutamate Oxidase Gels: Synthesis, Characterization, and Glutamate DeterminationELECTROANALYSIS, Issue 23 2005Maogen Zhang Abstract The biopolymer chitosan (CHIT) was chemically modified with glutaric dialdehyde (GDI) and used for the covalent immobilization of enzyme glutamate oxidase (GmOx). The relationships between the loaded, retained, and active units of GmOx in the CHIT-GDI-GmOx gels were determined by electrochemical assays. The latter indicated that on average ca. 95% of the GmOx was retained in the CHIT-GDI matrix that was loaded with 0.10,3.0 units of the enzyme. The maximum activity of the GmOx immobilized in the gels corresponded to ca. 5% of the activity of the free enzyme. Platinum electrodes coated with CHIT-GDI-GmOx gels (films) were used as amperometric biosensors for glutamate. Such biosensors displayed good operational and long-term stability (at least 11,h and 100 days, respectively) in conjunction with low detection limit of 0.10,,M glutamate (S/N=3), linear range up to 0.5,mM (R2=0.991), sensitivity of 100 mA M,1 cm,2, and short response time (t90%=2,s). This demonstrated an efficient signal transduction in the Pt/CHIT-GDI-GmOx+glutamate system. The CHIT-GDI-GmOx gels constitute a new biosensing element for the development of glutamate biosensors. [source] Self-Assembled Graphene,Enzyme Hierarchical Nanostructures for Electrochemical BiosensingADVANCED FUNCTIONAL MATERIALS, Issue 19 2010Qiong Zeng Abstract The self-assembly of sodium dodecyl benzene sulphonate (SDBS) functionalized graphene sheets (GSs) and horseradish peroxidase (HRP) by electrostatic attraction into novel hierarchical nanostructures in aqueous solution is reported. Data from scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction demonstrate that the HRP,GSs bionanocomposites feature ordered hierarchical nanostructures with well-dispersed HRP intercalated between the GSs. UV-vis and infrared spectra indicate the native structure of HRP is maintained after the assembly, implying good biocompatibility of SDBS-functionalized GSs. Furthermore, the HRP,GSs composites are utilized for the fabrication of enzyme electrodes (HRP,GSs electrodes). Electrochemical measurements reveal that the resulting HRP,GSs electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, low detection limit, and fast amperometric response. These desirable electrochemical performances are attributed to excellent biocompatibility and superb electron transport efficiency of GSs as well as high HRP loading and synergistic catalytic effect of the HRP,GSs bionanocomposites toward H2O2. As graphene can be readily non-covalently functionalized by "designer" aromatic molecules with different electrostatic properties, the proposed self-assembly strategy affords a facile and effective platform for the assembly of various biomolecules into hierarchically ordered bionanocomposites in biosensing and biocatalytic applications. [source] Immunosensors: (Ionic-Liquid-Doped Polyaniline Inverse Opals: Preparation, Characterization, and Application for the Electrochemical Impedance Immunoassay of Hepatitis B Surface Antigen) Adv.ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009Funct. Xing-Hua Li et al. describe the preparation of ionic liquid-doped polyaniline (IL-PANI) inverse opaline film with surface assemblies of gold nanoparticles. The resulting AuNP/IL-PANI film is conjugated with Hepatitis B surface antibody molecules to fabricate a immunosensor with a low detection limit for Hepatitis B surface antigen. [source] Label-Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic Range by using Gold Nanoparticles and DNAzyme,ADVANCED MATERIALS, Issue 17 2008Zidong Wang In the presence of Pb2+, a cleaved enzyme,substrate complex releases ssDNA that adsorbs onto and stabilizes gold nanoparticles (AuNPs) against salt-induced aggregation. In the absence of Pb2+, the uncleaved complex can not stabilize the AuNPs, resulting in purple,blue AuNP aggregates (see figure). The sensor has a low detection limit of 3,nM, a high selectivity, and a tunable dynamic range. [source] Preparation of anti-danofloxacin antibody and development of an indirect competitive enzyme-linked immunosorbent assay for detection of danofloxacin residue in chicken liverJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 7 2009Zhongqiu Liu Abstract BACKGROUND: Danofloxacin is used widely as both a clinical medicine for humans and a veterinary drug in animal husbandry. In this study a polyclonal anti-danofloxacin antibody was prepared for the first time and a simple and rapid indirect competitive enzyme-linked immunosorbent assay (cELISA) method based on the antibody was developed to monitor danofloxacin residue in chicken liver. RESULTS: The prepared antibody showed high sensitivity, with an IC50 value of 2.0 ng mL,1 towards danofloxacin, and good specificity, with significant cross-reactivity only towards pefloxacin (22%) and fleroxacin (21%) among commonly used (fluoro)quinolones evaluated in the study. The developed cELISA test kit had a detection limit of 0.8 ng mL,1, and satisfactory results were obtained when it was applied to chicken liver spiked with various levels of danofloxacin. The cELISA test kit was also used to detect danofloxacin in chicken liver samples purchased from a local food market, and the results were confirmed by liquid chromatography/mass spectrometry. CONCLUSION: The anti-danofloxacin antibody prepared in this study exhibits excellent quality, with high sensitivity and good specificity. The cELISA test kit based on the antibody has a very low detection limit and is suitable for use as an efficient screening method to detect danofloxacin residue in foods and food products. Copyright © 2009 Society of Chemical Industry [source] On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysisPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 22 2009Jia Tang Abstract In this study, an on-plate-selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless-steel plate, then modified with 4-mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI-MS simply by deposition of 2,5-dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on-plate strategy promising for online enrichment of glycopeptides, which could be applied in high-throughput proteome research. [source] A General Approach to Fabricate Diverse Noble-Metal (Au, Pt, Ag, Pt/Au)/Fe2O3 Hybrid NanomaterialsCHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2010Jun Zhang Dr. Abstract A novel, facile, and general one-pot strategy is explored for the synthesis of diverse noble-metal (Au, Pt, Ag, or Pt/Au)/Fe2O3 hybrid nanoparticles with the assistance of lysine (which is a nontoxic, user friendly amino acid that is compatible with organisms) and without using any other functionalization reagents. Control experiments show that lysine, which contains both amino and carboxylic groups, plays dual and crucial roles as both linker and capping agents in attaching noble metals with a small size and uniform distribution onto an Fe2O3 support. Considering the perfect compatibility of lysine with organism, this approach may find potentials in biochemistry and biological applications. Furthermore, this novel route is also an attractive alternative and supplement to the current methods using a silane coupling agent or polyelectrolyte for preparing hybrid nanomaterials. To demonstrate the usage of such hybrid nanomaterials, a chemical gas sensor has been fabricated from the as-synthesized Au/Fe2O3 nanoparticles and investigated for ethanol detection. Results show that the hybrid sensor exhibits significantly improved sensor performances in terms of high sensitivity, low detection limit, better selectivity, and good reproducibility in comparison with pristine Fe2O3. Most importantly, this general approach can be further employed to fabricate other hybrid nanomaterials based on different support materials. [source] Highly selective single nucleotide polymorphism recogniton by a chiral (5S) PNA beacon,CHIRALITY, Issue 1 2009Filbert Totsingan Abstract A chiral peptide nucleic acid (PNA) beacon containing a C-5 modified monomer based on L-lysine was synthesized. The terminal amino group of the lysine side chain was linked to a spacer for future applications on surfaces. The PNA beacon bears a carboxyfluorescein fluorophore and a dabcyl quencher at opposite ends. The DNA binding properties were compared with those of a homologous PNA beacon containing only achiral monomers. Both beacons underwent a fluorescence increase in the presence of complementary DNA, with higher efficiency and higher selectivity (evaluated using single mismatched DNA sequences) observed for the chiral monomer containing PNA. Ion exchange (IE) HPLC with fluorimetric detection was used in combination with the beacon for the selective detection of complementary DNA. A fluorescent peak corresponding to the PNA beacon:DNA duplex was observed at a very low detection limit (1 nM). The discriminating capacity of the chiral PNA beacon for a single mismatch was found to be superior to those observed with the unmodified one, thus confirming the potency of chirality for increasing the affinity and specificity of DNA recognition. Chirality, 2009. © 2008 Wiley-Liss, Inc. [source] Enantioselective, Potentiometric Memberane Electrodes Based on Different Cyclodextrins as Chiral Selectors for the Assay of S-FlurbiprofenELECTROANALYSIS, Issue 17 2006Raluca-Ioana Stefan-van, Staden Abstract Four enantioselective, potentiometric membrane electrodes (EPMEs) based on carbon paste impregnated with ,-, ,-, 2-hydroxyl-3-trimethylammoniopropyl-,-(as chloride salt) and ,-cyclodextrins, were proposed as a chiral selectors for assay of S-flurbiprofen raw materials and in its pharmaceutical formulation Froben 100 tablets. The best response was obtained when ,-cyclodextrin was used for the electrode design. The four EPMEs showed very low detection limits (of 10,8 to 10,9 mol/L magnitude orders). The surfaces of the electrodes are easily renewable by simply polishing on an alumina paper. [source] Simultaneous Determination of Uric Acid and Ascorbic Acid Using Edge Plane Pyrolytic Graphite ElectrodesELECTROANALYSIS, Issue 8 2006Roohollah, Torabi Kachoosangi Abstract Edge plane pyrolytic graphite electrodes have been applied for the determination of uric acid and ascorbic acid. The separate determination of uric acid was found to produce three linear ranges from 100,nM to 3400,,M with a detection limit of 30,nM found to be possible. Uric acid detection was also explored in the presence of 200,,M ascorbic acid where a detection limit of 52,nM was found to be possible. The detection of ascorbic acid in the presence of uric acid was also explored over three linear ranges of ascorbic acid with a limit of detection of 80,nM. Last the simultaneous determination of both uric acid and ascorbic acid is investigated over the range 100,nM to 1000,,M where detection limits of 50,nM and 120,nM were obtained respectively. Analysis of uric acid in a growth tissue medium was found to be successful, confirming the applicability of the methodology to real matrices. This protocol is shown to provide low detection limits, easy handling (no electrode modification), good voltammetric peak separation of uric acid and ascorbic acid and a wide linear dynamic range. [source] Nanowire-Based Electrochemical BiosensorsELECTROANALYSIS, Issue 6 2006Abstract We review recent advances in biosensors based on one-dimensional (1-D) nanostructure field-effect transistors (FET). Specifically, we address the fabrication, functionalization, assembly/alignment and sensing applications of FET based on carbon nanotubes, silicon nanowires and conducting polymer nanowires. The advantages and disadvantages of various fabrication, functionalization, and assembling procedures of these nanosensors are reviewed and discussed. We evaluate how they have been used for detection of various biological molecules and how such devices have enabled the achievement of high sensitivity and selectivity with low detection limits. Finally, we conclude by highlighting some of the challenges researchers face in the 1-D nanostructures research arena and also predict the direction toward which future research in this area might be directed. [source] Microfluidic chip-capillary electrophoresis for two orders extension of adjustable upper working range for profiling of inorganic and organic anions in urineELECTROPHORESIS, Issue 18 2010Wen Peng Guo Abstract To meet the need for onsite monitoring of urine anions, a microfluidic chip-capillary electrophoresis device was designed, fabricated and tested to extend the upper CE working range for an enhancement up to 500 fold (100 fold for sample dilution and 5 folds for CE injection) in order to analyze highly variable anionic metabolites in urine samples. Capillaries were embedded between two PMMA plates with laser-fabricated microchannel patterns to produce the microfluidic chip-capillary electrophoresis to perform standard/sample dilution and CE injection with adjustable dilution ratios. A circular ferrofluid valve was incorporated on-chip to perform cleanup and conditioning, mixing and dilution, injection and CE separation. Under optimized conditions, a complete assay for four samples can be achieved within an hour for 15 anions commonly found in urines. Satisfactory working ranges (0.005,500,mM) and low detection limits (0.5,6.5,,M based on S/N =2) are obtained with satisfactory repeatability (RSD, n=5) 0.52,0.87% and 4.1,6.5% for migration time and peak area, respectively. The working ranges with two orders adjustable upper extension are adequate to cover all analytes concentrations commonly found in human urine samples. The device fabricated shows sufficiently large experimentally verifiable enhancement factor to meet the application requirements. Its reliability was established by more than 94% recoveries of spiked standards and agreeable results from parallel method comparison with conventional ion chromatography method. The extension of the upper CE working range enables flexible onsite dilution on demand, a quick turn-around of results, and a low-cost device suitable for bedside monitoring of patients under critical conditions for metabolic disorders. [source] Determination of amino acids in rat vitreous perfusates by capillary electrophoresisELECTROPHORESIS, Issue 17 2004Kongthong Thongkhao-On Abstract In vivo determinations of amino acids are important for improving our understanding of physiological states of biological tissue function and dysfunction. However, the chemically complex matrix of different biological fluids complicates the assay of this important class of molecules. We introduce a method for characterizing the amino acid composition of submicroliter volumes of vitreous humor perfusates. Low-flow push-pull perfusion sampling is compatible with collecting small volume samples in a complicated matrix that are potentially difficult to separate. An efficient, sensitive, and rapid analysis of amino acids from in vivo perfusates of the vitreous is presented with 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde (CBQCA) derivatitation and capillary electrophoresis (CE) separation with laser-induced fluorescence detection (LIF). Derivatization with CBQCA for up to 2 h provided high sensitivity and low detection limits at the nM level. Seventeen amino acids including D -serine (D -Ser) and D -aspartate (D -Asp) were resolved in less than 10 min. Importantly, D -Ser is separated from its enantiomeric pair. Characterization of vitreal amino acids with this assay technique will be useful for understanding ocular diseases and physiological mechanisms in vision. [source] Development of negligible depletion hollow fiber,protected liquid-phase microextraction for sensing freely dissolved triazinesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2009Xialin Hu Abstract A new sampling method, termed negligible depletion hollow fiber,protected liquid-phase microextraction, was developed for sensing the freely dissolved concentration (Cfree) and evaluating the availability of atrazine (ATR), desethyl atrazine (DEA), and simazine (SIM) in water. The sampling device was prepared by impregnating 1-octanol to both the pores and the lumen of a piece of polypropylene microporous hollow fiber membrane. After equilibrium and negligible depletion extraction, the 1-octanol in the lumen of the hollow fiber (10 ,l) was collected for determination of triazines. Determination of Cfree and the distribution coefficient to 1-octanol (DOW) can be performed with this technique. A wide linear working range (1,200 ,g/L) and low detection limits (0.1,1 ,g/L) were obtained for triazines. Measured log DOW values of DEA (1.44 ± 0.04), SIM (2.06 ± 0.06), and ATR (2.33 ± 0.05) agreed well with those reported in the literature. The measured DOW values were independent of the chemical concentration and sample pH (pH 3,10) and negligibly affected by the sample salinity (0,500 mM), suggesting that environmentally relevant pH and salinity have no significant effects on the availability of triazines. Although a slight (,31%) increase of Cfree was observed, one-way analysis of variance indicated the Cfree of triazines were not significantly affected by the presence of Aldrich humic acid, Acros humic acid, and bovine albumin V (dissolved organic carbon [DOC], 0,100 mg/L). From 3 to 36% of the spiked triazines, however, were found to associate with the dissolved organic matter (DOM) in surface-water samples (DOC, 32.0,61.9 mg/L), suggesting the origin of the DOM is a key parameter in determining its association with and, thus, the availability of triazines. [source] WDX Studies on Ceramic Diffusion Barrier Layers of Metal Supported SOECsFUEL CELLS, Issue 6 2009D. Wiedenmann Abstract Solid oxide electrolyser cells (SOECs) have great potential for efficient and economical production of hydrogen fuel. Element diffusion between the Ni-cermet electrode and the metal substrate of metal supported cells (MSC) is a known problem in fuel cell and electrolysis technology. In order to hinder this unintentional mass transport, different ceramic diffusion barrier layers (DBLs) are included in recent cell design concepts. This paper is based on wavelength dispersive X-ray fluorescence investigations of different SOEC and focuses on Fe, Cr and Ni diffusion between the metal grains of the cathode and the metal substrate. Due to the low detection limits and therefore high analytical sensitivity, wavelength dispersive electron probe microanalysis (EPMA) provides a precise method to determine element distribution, absolute element concentration and changes between the reference material and aged cells on a microstructural level by element mappings and concentration profiles. The results of this work show considerable concentration gradients in the metal grains caused by mass exchange during cell operation. Diffusion can be inhibited significantly by integrating different ceramic DBLs of doped LaCrO3 -type or doped LaMnO3 -type perovskite, either by vacuum plasma spraying (VPS) or physical vapour deposition technique (PVD). [source] Methyl benzoate as a marker for the detection of mold in indoor building materialsJOURNAL OF SEPARATION SCIENCE, JSS, Issue 18 2005Loay Wady Abstract A convenient analytical method to quantify volatile organic compounds (VOCs) emitted from various building materials has not been addressed yet. This work presents a new and rapid automated method using SPME combined with GC/MS. Methyl benzoate , as a metabolic biomarker for mold growth,was used to indicate VOCs and to determine and assess mold growth on damp samples. Gypsum board and wallboard paper were used as examples of common indoor building materials. Optimized extraction conditions were carried out manually, using a GC/flame ionization detector. Moldy samples were analyzed using an automated SPME-GC/MS analysis under optimized conditions. The amount of methyl benzoate emitted from the studied samples ranged from 32 to 46 ppb, where the density of the fungal biomass was found to be 8×104 cells/mL. A relationship between the amount of fungal biomass and the emitted concentration of methyl benzoate was found and assessed based upon cultured mold samples taken from indoor building sites. The analytical method shows promise for the compound methyl benzoate, which can easily be identified at low detection limits (LOD = 3 ppb) and good linearity (> 0.988), and its extraction and detection can be accomplished cleanly by current extraction techniques. Results suggest that this method with easy sample preparation can be used for quantitation and, of importance, minimal matrix effects are observed. [source] TiO2 -Modified Macroporous Silica Foams for Advanced Enrichment of Multi-Phosphorylated PeptidesCHEMISTRY - A EUROPEAN JOURNAL, Issue 11 2009Jingjing Wan Abstract Enriching peptides: Novel TiO2 -modified macroporous materials (Ti-MOSF, see figure) have been synthesized with high surface area, large pore volume, and functional surfaces that are rich in coordinatively unsaturated TiIV species, which can be applied in the specific extraction of phosphopeptides and which show a preferential capture of multi-phosphorylated peptides with low detection limits and high selectivity. [source] |