Home About us Contact | |||
Long-term Isolation (long-term + isolation)
Selected AbstractsTHE COMBINED EFFECTS OF RIVERS AND REFUGIA GENERATE EXTREME CRYPTIC FRAGMENTATION WITHIN THE COMMON GROUND SKINK (SCINCELLA LATERALIS)EVOLUTION, Issue 2 2010Nathan D. Jackson Rivers can act as both islands of mesic refugia for terrestrial organisms during times of aridification and barriers to gene flow, though evidence for long-term isolation by rivers is mixed. Understanding the extent to which riverine barrier effects can be heightened for populations trapped in mesic refugia can help explain maintenance and generation of diversity in the face of Pleistocene climate change. Herein, we implement phylogenetic and population genetic approaches to investigate the phylogeographic structure and history of the ground skink, Scincella lateralis, using mtDNA and eight nuclear loci. We then test several predictions of a river,refugia model of diversification. We recover 14 well-resolved mtDNA lineages distributed east,west along the Gulf Coast with a subset of lineages extending northward. In contrast, ncDNA exhibits limited phylogenetic structure or congruence among loci. However, multilocus population structure is broadly congruent with mtDNA patterns and suggests that deep coalescence rather than differential gene flow is responsible for mtDNA,ncDNA discordance. The observed patterns suggest that most lineages originated from population vicariance due to riverine barriers strengthened during the Plio,Pleistocene by a climate-induced coastal distribution. Diversification due to rivers is likely a special case, contingent upon other environmental or biological factors that reinforce riverine barrier effects. [source] WHEN VICARS MEET: A NARROW CONTACT ZONE BETWEEN MORPHOLOGICALLY CRYPTIC PHYLOGEOGRAPHIC LINEAGES OF THE RAINFOREST SKINK, CARLIA RUBRIGULARISEVOLUTION, Issue 7 2004Ben L. Phillips Abstract Phylogeographic analyses of the fauna of the Australian wet tropics rainforest have provided strong evidence for long-term isolation of populations among allopatric refugia, yet typically there is no corresponding divergence in morphology. This system provides an opportunity to examine the consequences of geographic isolation, independent of morphological divergence, and thus to assess the broader significance of historical subdivisions revealed through mitochondrial DNA phylogeography. We have located and characterized a zone of secondary contact between two long isolated (mtDNA divergence > 15%) lineages of the skink Carlia rubrigularis using one mitochondrial and eight nuclear (two intron, six microsatellite) markers. This revealed a remarkably narrow (width<3 km) hybrid zone with substantial linkage disequilibrium and strong deficits of heterozygotes at two of three nuclear loci with diagnostic alleles. Cline centers were coincident across loci. Using a novel form of likelihood analysis, we were unable to distinguish between sigmoidal and stepped cline shapes except at one nuclear locus for which the latter was inferred. Given estimated dispersal rates of 90,133 m X gen,1/2 and assuming equilibrium, the observed cline widths suggest effective selection against heterozygotes of at least 22,49% and possibly as high as 70%. These observations reveal substantial postmating isolation, although the absence of consistent deviations from Hardy-Weinberg equilibrium at diagnostic loci suggests that there is little accompanying premating isolation. The tight geographic correspondence between transitions in mtDNA and those for nuclear genes and corresponding evidence for selection against hybrids indicates that these morphologically cryptic phylogroups could be considered as incipient species. Nonetheless, we caution against the use of mtDNA phylogeography as a sole criterion for defining species boundaries. [source] Incursion and excursion of Antarctic biota: past, present and futureGLOBAL ECOLOGY, Issue 2 2006D. K. A. Barnes ABSTRACT Aim, To investigate the major paradigms of intense isolation and little anthropogenic influence around Antarctica and to examine the timings and scales of the modification of the southern polar biota. Location, Antarctica and surrounding regions. Methods, First, mechanisms of and evidence for long-term isolation are reviewed. These include continental drift, the development of a surrounding deep-water channel and the Antarctic Circumpolar Current (ACC). They also include levels of endemism, richness and distinctiveness of assemblages. Secondly, evidence for past and modern opportunities for species transport are investigated. Comparative levels of alien establishments are also examined around the Southern Ocean. Discussion, On a Cenozoic time-scale, it is clear that Gondwana's fragmentation led to increasing geographical isolation of Antarctica and the initiation of the ACC, which restricted biota exchange to low levels while still permitting some movement of biota. On a shorter Quaternary time-scale, the continental ice-sheet, influenced by solar (Milankovitch) cycles, has expanded and contracted periodically, covering and exposing terrestrial and continental shelf habitats. There were probably refugia for organisms during each glacial maxima. It is also likely that new taxa were introduced into Antarctica during cycles of ice sheet and oceanic front movement. The current situation (a glacial minimum) is not ,normal'; full interglacials represent only 10% of the last 430 ka. On short (ecological) time-scales, many natural dispersal processes (airborne, oceanic eddy, rafting and hitch-hiking on migrants) enable the passage of biota to and from Antarctica. In recent years, humans have become influential both directly by transporting organisms and indirectly by increasing survival and establishment prospects via climate change. Main conclusions, Patterns of endemism and alien establishment are very different across taxa, land and sea, and north vs. south of the Polar Frontal Zone. Establishment conditions, as much as transport, are important in limiting alien establishment. Three time-scales emerge as important in the modification of Antarctica's biota. The natural ,interglacial' process of reinvasion of Antarctica is being influenced strongly by humans. [source] The divergence of two independent lineages of an endemic Chinese gecko, Gekko swinhonis, launched by the Qinling orogenic beltMOLECULAR ECOLOGY, Issue 12 2010JIE YAN Abstract The genetic structure and demographic history of an endemic Chinese gecko, Gekko swinhonis, were investigated by analysing the mitochondrial cytochrome b gene and 10 microsatellite loci for samples collected from 27 localities. Mitochondrial DNA data provided a detailed distribution of two highly divergent evolutionary lineages, between which the average pairwise distance achieved was 0.14. The geographic division of the two lineages coincided with a plate boundary consisting of the Qinling and Taihang Mts, suggesting a historical vicariant pattern. The orogeny of the Qinling Mts, a dispersal and major climatic barrier of the region, may have launched the independent lineage divergence. Both lineages have experienced recent expansion, and the current sympatric localities comprised the region of contact between the lineages. Individual-based phylogenetic analyses of nucDNA and Bayesian-clustering approaches revealed a deep genetic structure analogous to mtDNA. Incongruence between nucDNA and mtDNA at the individual level at localities outside of the contact region can be explained by the different inheritance patterns and male-biased dispersal in this species. High genetic divergence, long-term isolation and ecological adaptation, as well as the morphological differences, suggest the presence of a cryptic species. [source] Phylogeography of the North American red fox: vicariance in Pleistocene forest refugiaMOLECULAR ECOLOGY, Issue 12 2009KEITH B. AUBRY Abstract Fossil, archaeological, and morphometric data suggest that indigenous red foxes in North America were derived from vicariance in two disjunct refugia during the last glaciation: one in Beringia and one in the contiguous USA. To test this hypothesis, we conducted a phylogeographical analysis of the North American red fox within its presettlement range. We sequenced portions of the mitochondrial cytochrome b (354 bp) gene and D-loop (342 bp) from 220 historical red fox specimens. Phylogenetic analysis of the cytochrome b gene produced two clades that diverged c. 400 000 years before present (bp): a Holarctic and a Nearctic clade. D-loop analyses of the Nearctic clade indicated three distinct subclades (, 99% Bayesian posterior probability); two that were more recently derived (rho estimate c. 20 000 bp) and were restricted to the southwestern mountains and the eastern portion of North America, and one that was older (rho estimate c. 45 000 bp) and more widespread in North America. Populations that migrated north from the southern refugium following deglaciation were derived from the colonization of North America during or prior to the Illinoian glaciation (300 000,130 000 bp), whereas populations that migrated south from the northern refugium represent a more recent colonization event during the Wisconsin glaciation (100 000,10 000 bp). Our findings indicate that Nearctic clade red foxes are phylogenetically distinct from their Holarctic counterparts, and reflect long-term isolation in two disjunct forest refugia during the Pleistocene. The montane lineage, which includes endangered populations, may be ecologically and evolutionarily distinct. [source] Out of Arabia,The settlement of Island Soqotra as revealed by mitochondrial and Y chromosome genetic diversityAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2009Viktor, erný Abstract The Soqotra archipelago is one of the most isolated landmasses in the world, situated at the mouth of the Gulf of Aden between the Horn of Africa and southern Arabia. The main island of Soqotra lies not far from the proposed southern migration route of anatomically modern humans out of Africa ,60,000 years ago (kya), suggesting the island may harbor traces of that first dispersal. Nothing is known about the timing and origin of the first Soqotri settlers. The oldest historical visitors to the island in the 15th century reported only the presence of an ancient population. We collected samples throughout the island and analyzed mitochondrial DNA and Y-chromosomal variation. We found little African influence among the indigenous people of the island. Although the island population likely experienced founder effects, links to the Arabian Peninsula or southwestern Asia can still be found. In comparison with datasets from neighboring regions, the Soqotri population shows evidence of long-term isolation and autochthonous evolution of several mitochondrial haplogroups. Specifically, we identified two high-frequency founder lineages that have not been detected in any other populations and classified them as a new R0a1a1 subclade. Recent expansion of the novel lineages is consistent with a Holocene settlement of the island ,6 kya. Am J Phys Anthropol, 2009. © 2008 Wiley-Liss, Inc. [source] Differentiation among disjunct populations of agamospermous species of Hieracium section Cernua (Asteraceae) in Central European subalpine habitatsBOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2008MICHA, RONIKIER A morphological survey and assessment of genetic diversity using amplified fragment length polymorphism (AFLP) were applied to study the variability of two agamospermous species of Hieracium section Cernua R. Uechtr. characterized by disjunct, subalpine distributions: H. silesiacum (Western Carpathians and Eastern Sudetes) and H. vierhapperi (Western Carpathians and Eastern Alps). Contrasting patterns were revealed. In H. silesiacum, no genetic or morphological differences were found between its remote populations from the Sudetes and the Tatry mountains, suggesting a recent dispersal. In contrast, distinct morphological differentiation of population in the Nízke Tatry mountains was confirmed by high genetic differentiation; the analysis indicated independent origin of this population and gave grounds for taxonomic separation and description of a new species, H. austrotatricum. In H. vierhapperi, genetic differentiation and slight morphological difference (colour of achenes) was observed between disjunct populations from the Carpathians and the Alps. The data suggest long-term isolation of these populations resulting in pronounced independent history. High number of markers monomorphic for all populations supports the existing hypothesis of common sexual ancestors from H. section Cernua involved in the origin of these polyploid taxa. No or only minor morphological differentiation within the taxa indicates high stability of apomictic populations of Hieracium. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158, 93,105. [source] |