Long-term Ethanol Exposure (long-term + ethanol_exposure)

Distribution by Scientific Domains


Selected Abstracts


Long-Term Ethanol Exposure Impairs Neuronal Differentiation of Human Neuroblastoma Cells Involving Neurotrophin-Mediated Intracellular Signaling and in Particular Protein Kinase C

ALCOHOLISM, Issue 3 2009
Julian Hellmann
Background:, Revealing the molecular changes in chronic ethanol-impaired neuronal differentiation may be of great importance for understanding ethanol-related pathology in embryonic development but also in the adult brain. In this study, both acute and long-term effects of ethanol on neuronal differentiation of human neuroblastoma cells were investigated. We focused on several aspects of brain-derived neurotrophic factor (BDNF) signaling because BDNF activates the extracellular signal-regulated kinase (ERK) cascade, promoting neuronal differentiation including neurite outgrowth. Methods:, The effects of ethanol exposure on morphological differentiation, cellular density, neuronal marker proteins, basal ERK activity, and ERK responsiveness to BDNF were measured over 2 to 4 weeks. qRT-PCR and Western blotting were performed to investigate the expression of neurotrophin receptor tyrosin kinase B (TrkB), members of the ERK-cascade, protein kinase C (PKC) isoforms and Raf-Kinase-Inhibitor-Protein (RKIP). Results:, Chronic ethanol interfered with the development of a neuronal network consisting of cell clusters and neuritic bundles. Furthermore, neuronal and synaptic markers were reduced, indicating impaired neuronal differentiation. BDNF-mediated activation of the ERK cascade was found to be continuously impaired by ethanol. This could not be explained by expressional changes monitored for TrkB, Raf-1, MEK, and ERK. However, BDNF also activates PKC signaling which involves RKIP, which finally leads to ERK activation as well. Therefore, we hypothesized that ethanol impairs this branch of BDNF signaling. Indeed, both PKC and RKIP were significantly down-regulated. Conclusions:, Chronic ethanol exposure impaired neuronal differentiation of neuroblastoma cells and BDNF signaling, particularly the PKC-dependent branch. RKIP, acting as a signaling switch at the merge of the PKC cascade and the Raf/MEK/ERK cascade, was associated with neuronal differentiation and significantly reduced in ethanol treatment. Moreover, PKC expression itself was even more strongly reduced. In contrast, members of the Raf-1/MEK/ERK cascade were less affected and the observed changes were not associated with impaired differentiation. Thus, reduced RKIP and PKC levels and subsequently reduced positive feedback on ERK activation provide an explanation for the striking effects of long-term ethanol exposure on BDNF signal transduction and neuronal differentiation, respectively. [source]


Long-term ethanol exposure causes human liver cancer cells to become resistant to mitomycin C treatment through the inactivation of bad-mediated apoptosis,

MOLECULAR CARCINOGENESIS, Issue 8 2010
Ching-Shui Huang
Abstract The aim of this study was to test whether long-term ethanol consumption confers therapeutic resistance to human liver cancer patients infected with hepatitis B virus (HBV). Chronic ethanol-treated cells were established by consecutively culturing a human hepatocellular carcinoma cell line, Hep 3B, which contains integrated HBV sequences, for 20,40 passages with or without 10,mM ethanol (designated as E20,E40 and C20,C40, respectively). Flow cytometry analysis demonstrated that a growth promoting effect of long-term ethanol treatment was induced in the E40 cells through preferential acceleration of S-phase in these cells. Lower protein expression levels of p16, p21/Cip1, and p27/Kip1 were detected in the ethanol-treated E40 cells. We further demonstrated that long-term ethanol-treated E40 cells develop drug resistance in response to mitomycin C (MMC) treatment (>8,µM). Immunoblot analysis revealed that caspase-8-mediated mitochondrial apoptotic signals (such as Bad) were inactivated in the MMC-resistant E40 cells. Immunoprecipitation experiments demonstrated that the sequestration of phosphorylated Bad (Ser-112) through its binding with 14-3-3 was detected more profoundly in the MMC-resistant E40 cells. Next, we examined the therapeutic efficacy of MMC (10,mg MMC/kg body weight, three times per week) in severe combined immunodeficient (SCID) mice bearing E40- and C40-xenografted tumors. Significant reductions (>3-fold) in tumor growth were detected in MMC-treated C40-xenografted mice. In vivo and in vitro studies demonstrated that AKT- and extracellular signal-regulated kinase (ERK)-mediated survival factors inhibited the Bad-induced mitochondrial apoptotic signals that were involved in E40 tumor cells and that conferred resistance to MMC. © 2010 Wiley-Liss, Inc. [source]


Long-Term Ethanol Exposure Impairs Neuronal Differentiation of Human Neuroblastoma Cells Involving Neurotrophin-Mediated Intracellular Signaling and in Particular Protein Kinase C

ALCOHOLISM, Issue 3 2009
Julian Hellmann
Background:, Revealing the molecular changes in chronic ethanol-impaired neuronal differentiation may be of great importance for understanding ethanol-related pathology in embryonic development but also in the adult brain. In this study, both acute and long-term effects of ethanol on neuronal differentiation of human neuroblastoma cells were investigated. We focused on several aspects of brain-derived neurotrophic factor (BDNF) signaling because BDNF activates the extracellular signal-regulated kinase (ERK) cascade, promoting neuronal differentiation including neurite outgrowth. Methods:, The effects of ethanol exposure on morphological differentiation, cellular density, neuronal marker proteins, basal ERK activity, and ERK responsiveness to BDNF were measured over 2 to 4 weeks. qRT-PCR and Western blotting were performed to investigate the expression of neurotrophin receptor tyrosin kinase B (TrkB), members of the ERK-cascade, protein kinase C (PKC) isoforms and Raf-Kinase-Inhibitor-Protein (RKIP). Results:, Chronic ethanol interfered with the development of a neuronal network consisting of cell clusters and neuritic bundles. Furthermore, neuronal and synaptic markers were reduced, indicating impaired neuronal differentiation. BDNF-mediated activation of the ERK cascade was found to be continuously impaired by ethanol. This could not be explained by expressional changes monitored for TrkB, Raf-1, MEK, and ERK. However, BDNF also activates PKC signaling which involves RKIP, which finally leads to ERK activation as well. Therefore, we hypothesized that ethanol impairs this branch of BDNF signaling. Indeed, both PKC and RKIP were significantly down-regulated. Conclusions:, Chronic ethanol exposure impaired neuronal differentiation of neuroblastoma cells and BDNF signaling, particularly the PKC-dependent branch. RKIP, acting as a signaling switch at the merge of the PKC cascade and the Raf/MEK/ERK cascade, was associated with neuronal differentiation and significantly reduced in ethanol treatment. Moreover, PKC expression itself was even more strongly reduced. In contrast, members of the Raf-1/MEK/ERK cascade were less affected and the observed changes were not associated with impaired differentiation. Thus, reduced RKIP and PKC levels and subsequently reduced positive feedback on ERK activation provide an explanation for the striking effects of long-term ethanol exposure on BDNF signal transduction and neuronal differentiation, respectively. [source]


Polyamines Contribute to Ethanol Withdrawal-Induced Neurotoxicity in Rat Hippocampal Slice Cultures Through Interactions With the NMDA Receptor

ALCOHOLISM, Issue 7 2003
D. Alex Gibson
Background: Several reports demonstrate that withdrawal from long-term ethanol exposure is associated with significant central nervous system neurotoxicity, produced at least in part by increased activity of N -methyl-d-aspartate receptors (NMDARs). Recent evidence suggests that elevations in the synthesis and release of the polyamines spermidine and spermine, which are known modulators of NMDARs, contribute to the increased activity of the receptor during ethanol withdrawal. Therefore, the goal of this investigation was to examine what role, if any, spermidine and spermine have in the generation of ethanol withdrawal-induced neurotoxicity. Methods: Neurotoxicity (measured as fluorescence of the cell death indicator propidium iodide, PI), glutamate release (measured by high-performance liquid chromatography analysis), and polyamine concentrations (by high-performance liquid chromatography) were measured in rat hippocampal slice cultures undergoing withdrawal from chronic (10 day) ethanol exposure (100 mM). In addition, the effects of the polyamine synthesis inhibitor di-fluoro-methyl-ornithine (DFMO, 0.1,100 nM) and NMDAR polyamine-site antagonists ifenprodil, arcaine, and agmatine (1 nM-100 ,M) on ethanol withdrawal- and NMDA-induced neurotoxicity were measured. Results: Ethanol withdrawal significantly increased glutamate release (peaking at 18 hr with a 53% increase), increased concentrations of putrescine and spermidine (136% and 139% increases, respectively, at 18 hr), and produced significant cytotoxicity in the CA1 hippocampal region (56% increase in PI staining relative to controls) of the cultures. The cell death produced by ethanol withdrawal was significantly inhibited by ifenprodil (IC50= 14.9 nM), arcaine (IC50= 37.9 nM), agmatine (IC50= 41.5 nM), and DFMO (IC50= 0.6 nM). NMDA (5 ,M) significantly increased PI staining in the CA1 region of the hippocampal cultures (365% relative to controls), but ifenprodil, arcaine, agmatine, and DFMO all failed to significantly affect this type of toxicity. Conclusions: These data implicate a role for polyamines in ethanol withdrawal-induced neurotoxicity and suggest that inhibiting the actions of polyamines on NMDARs may be neuroprotective under these conditions. [source]


Differential Effects of Ethanol on Signal Transduction

ALCOHOLISM, Issue 1 2000
Gail H. Levine
Background: PC12 pheochromocytoma cells were used as a model to study the effect of long-term ethanol exposure on signal transduction systems. In PC12 cells, the agonist bradykinin stimulates a phospholipase C specific for inositol-containing phospholipids and a phospholipase D specific for phosphatidylcholine. Methods: PC12 cells were grown in monolayer and cultured in the presence and absence of 1% ethanol for 5 days. After this period, bradykinin-stimulated phospholipase C and D were measured. The effect of long-term ethanol on the bradykinin-mediated activation of mitogen-activated protein (MAP) kinase was also measured. Results: In cells exposed to 1% ethanol for 5 days, bradykinin-stimulated phospholipase D was greatly attenuated, whereas bradykinin-stimulated phospholipase C was not altered. The tyrosine kinase inhibitor, genistein, blocked the bradykinin-mediated activation of phospholipase D but did not affect the stimulation of phospholipase C. However, long-term ethanol treatment did not attenuate the ability of bradykinin to activate MAP kinase, which suggests that ethanol did not have a general effect on all tyrosine kinase pathways. Conclusions: Ethanol has a differential effect on signal transduction in PC12 cells. Activation of phospholipase D may be mediated by a kinase, whereas the activation of phospholipase C is probably mediated by the guanine nucleotide binding protein, Gq. Because of these differences in activation mechanism, the pathways may adapt differently to long-term exposure to ethanol. [source]