Long Shelf Life (long + shelf_life)

Distribution by Scientific Domains


Selected Abstracts


Role of medicines in malaria control and elimination

DRUG DEVELOPMENT RESEARCH, Issue 1 2010
Marian Warsame
Abstract Antimalarial medicines constitute important tools to cure and prevent malaria infections, thereby averting death and disability; their role in reducing the transmission of malaria is becoming increasingly important. Effective medicines that are currently available include artemisinin-based combination therapies (ACTs) for uncomplicated malaria, parenteral and rectal formulations of artemisinin derivatives and quinine injectables for severe malaria, and primaquine as an anti-relapse agent. These medicines are not optimal, however, owing to safety considerations in specific risk groups, complex regimens, and less than optimal formulations. The efficacy of antimalarial medicines including currently used ACTs is threatened by parasite resistance. Resistance to artemisinins has recently been identified at the Cambodia,Thailand border. Intermittent preventive treatment is constrained by the lack of a replacement for sulfadoxine-pyrimethamine. Despite increasing financial support to procure medicines, access to medicines by populations at risk of malaria, particularly in African countries, remains poor. This is largely due to weak health systems that are unable to deliver quality diagnostics and medicines through an efficient supply chain system, close at hand to the sick patient, especially in remote rural areas. Health systems are also challenged by incorrect prescribing practices in the informal and often unregulated private sector (an important provider of medicines for malaria) and the proliferation of counterfeit and substandard medicines. The provision of a more equitable access to life-saving medicines requires no less than a steady drug development pipeline for new medicines tailored to meet the challenging conditions in endemic countries, ideally single dose, highly effective against both disease and relapse-causing parasites and infective forms, extremely safe and with a long shelf life, and made available at affordable prices. Drug Dev Res 71: 4,11, 2010. © 2010 Wiley-Liss, Inc. [source]


EFFECT OF EMULSIFIERS AND FUNGAL , -AMYLASE ON RHEOLOGICAL CHARACTERISTICS OF WHEAT DOUGH AND QUALITY OF FLAT BREAD

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 2 2009
ARASH KOOCHEKI
ABSTRACT Teftoon, a flat bread made of whole wheat flour, is prepared by hand sheeting of dough, followed by baking. Different emulsifiers, like lecithin, E471 (distilled monoglyceride) and E472 (diacetylated tartaric acid esters of mono- and digelycerid of fatty acids), were added to the flour at various levels ranging between 0.25 and 1.0% w/w, and it was observed that they improved the dough characteristics. Improvement in bread quality parameters, such as force to tear and sensory acceptability, were monitored. Fungal, -amylase was also incorporated into the flour at 5,20 g/100 kg flour basis alone and in combination with the emulsifier. The force required to tear the fresh bread was decreased with emulsifier and enzyme addition; however, E472 addition at 0.75% w/w of whole wheat flour gave the softest bread. The tear force of stored bread significantly increased with storage; however, bread containing E472 showed a less increase in tear force up to a period of 3 days. The sensory acceptability was found to be higher than that of the control bread for emulsifiers, and lower for enzyme at a concentration higher than 10 g/kg flour. PRACTICAL APPLICATIONS Flat bread is normally consumed fresh, but the staling phenomenon starts immediately after baking this kind of bread. Today, large-scale production and increased consumer demands for high-quality bread with long shelf life have created the need for functional food additives such as emulsifiers and , -amylase enzyme. Incorporation of emulsifiers and enzyme decreased the hardness of Taftoon bread. Emulsifiers and , -amylase enzyme enhanced the flat bread dough quality. The sensory acceptability also improved with the addition of emulsifiers. Optimizing the amount of emulsifiers and enzyme required for reduction of bread hardness is vital because the quality and price of the final product depend on this parameter. [source]


EXPERIMENTAL VACUUM SPRAY DRYING OF PROBIOTIC FOODS INCLUDED WITH LACTIC ACID BACTERIA

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 6 2009
YUTAKA KITAMURA
ABSTRACT This research aims to develop a vacuum spray dryer (VSD) that performs spray drying in a vacuumed drying tower at a lower temperature than the conventional spray drying. The VSD operational drying temperatures for the probiotic foods containing lactic acid bacteria were determined by the relationships between the temperature and the vapor pressure, and were correlated by Clapeyron's equation. The drying of the fermented milk starter at 35C drying tower was experimentally possible; however, powder from the lactic fermenting beverage was not obtained even at 50C, which resulted from the lower glass transition temperature of the material. Compared with ATP concentration of the fermented milk starter before and after the VSD drying, the lower the drying temperature, the higher the microbial activity is retained. The ATP ratio as 30% of the raw materials shows the high feasibility of VSD for dairy processing. PRACTICAL APPLICATIONS During the spray drying of liquid or slurry food, the heat-sensitive functional ingredients such as vitamin, enzyme or bacteria are usually degraded or lost because of the contact with hot air between 120 and 180C. Markets need food powder that involves a lot of functional materials and a long shelf life for the expansion of healthy food. The experimental vacuum spray dryer (VSD) showed a potential to dry probiotic foods involving lactic acid bacteria without their inactivation. Although the lactic acid bacteria contained in the powder at 35C,VSD was 30% of the raw material, it is more economical than using the liquid type fermented milk starter. With some mechanical or operational modifications for the high moisture content and low recovery ratio of the powder, VSD is applicable for dairy processing factories. [source]


EFFECTS OF COOKING AND DRYING PROCESSES ON PHYSICAL, CHEMICAL AND SENSORY PROPERTIES OF LEGUME BASED BULGUR

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 5 2009
NERMIN BILGIÇLI
ABSTRACT The changes in physical, chemical and sensory properties of common bean (CB) and chickpea (CP) bulgur prepared with different cooking (atmospheric, pressure and microwave) and drying (oven at 60, 70 and 80C; microwave at 350 and 700 W) processes were investigated. Neither the cooking methods nor the drying methods significantly affected the ash and protein contents of CB and CP bulgur. Pressure cooking gave lower phytate phosphorus and higher bulgur yield and volume increase values when compared to the other cooking methods. Average bulgur yields were found as 82% for CB and 84% for CP. Cooking processes decreased the phytic acid content of the bulgurs between 25.2 and 39.5% according to raw legume. Ca, K, Mg, P, Zn, Cu and Fe contents of the bulgurs decreased in variable degrees (8.69,28.5%) when compared to raw materials. Pressure cooked and oven (80C) dried bulgur samples in the case of bulgur pilaf were appreciated by the panelists in terms of overall acceptability. PRACTICAL APPLICATIONS Bulgur is a valuable cereal product with its high nutritional value and long shelf life. In this research, bulgur process was applied successfully on common bean and chickpea, and new legume-based bulgur products improved. The bulgur yield (BY) of the legumes was above 80%. Pressure cooking increased the nutritional, sensory and technological quality of the legume bulgurs. [source]


Presence of sourdough lactic acid bacteria in commercial total mixed ration silage as revealed by denaturing gradient gel electrophoresis analysis

LETTERS IN APPLIED MICROBIOLOGY, Issue 4 2010
C. Wang
Abstract Aims:, To characterize the bacterial communities in commercial total mixed ration (TMR) silage, which is known to have a long bunk life after silo opening. Methods and Results:, Samples were collected from four factories that produce TMR silage according to their own recipes. Three factories were sampled three times at 1-month intervals during the summer to characterize the differences between factories; one factory was sampled 12 times, three samples each during the summer, autumn, winter and spring, to determine seasonal changes. Bacterial communities were determined by culture-independent denaturing gradient gel electrophoresis. All silages contained lactic acid as the predominant acid, and the contents appeared stable regardless of factories and product seasons. Acetic acid and 1-propanol contents were different between factories and indicated seasonal changes, with increases in warm seasons compared to cool seasons. Both differences and similarities existed among the bacterial communities from each factory and product season. Lactobacillus parabuchneri was found in the products from three of four factories. Various sourdough lactic acid bacteria (LAB) were identified in commercial TMR silage; Lactobacillus panis, Lactobacillus hammesii, Lactobacillus mindensis, Lactobacillus pontis, Lactobacillus frumenti and Lactobacillus farciminis were detected in many products. Moreover, changes owing to product season were distinctive, and Lact. pontis and Lact. frumenti became detectable in summer products. Conclusion:, Sourdough LAB are involved in the ensiling of commercial TMR silage. Silage bacterial communities vary more by season than by factory. The LAB species Lact. parabuchneri was detected in the TMR silage but may not be essential to the product's long bunk life after silo opening. Significance and Impact of the Study:, Commercial TMR silage resembles sourdough with respect to bacterial communities and long shelf life. The roles of sourdough LAB in the ensiling process and aerobic stability are worth examining. [source]


Plasma Polymer Surfaces Compatible with a CMOS Process for Direct Covalent Enzyme Immobilization

PLASMA PROCESSES AND POLYMERS, Issue 1 2009
Yongbai Yin
Abstract Plasma polymerized surfaces, prepared using a CMOS compatible plasma enhanced chemical vapor polymerization technique, are found to covalently immobilize enzymes without the need for intermediate chemical linker groups. The polymerized surfaces are smooth, strongly adherent to substrates, and have a long shelf life for storage. After incubation with enzymes, a densely packed monolayer is attached. We report the effects of both oxygen etching and annealing post-processing showing that they can be implemented so as not to affect the enzyme binding performance. The fully compatible polymerization method with CMOS device manufacture processes is a potential candidate for integration into nano-CMOS biochemical sensors for direct immobilization of enzymes. [source]


Liposome-Encapsulated Hemoglobin, TRM-645: Current Status of the Development and Important Issues for Clinical Application

ARTIFICIAL ORGANS, Issue 2 2009
Shinichi Kaneda
Abstract Clinical application of artificial oxygen carriers as a substitute for blood transfusion has long been expected to solve some of the problems associated with blood transfusion. Use for oxygen delivery treatment for ischemic disease by oxygen delivery has also been examined. These prospective applications of artificial oxygen carriers are, however, still in development. We have developed liposome-encapsulated hemoglobin (LEH), developmental code TRM-645, using technologies for encapsulation of concentrated hemoglobin (Hb) with high encapsulation efficiency as well as surface modification to achieve stability in circulating blood and a long shelf life. We have confirmed the basic efficacy and safety of TRM-645 as a red blood cell substitute in studies on the efficacy of oxygen delivery in vivo, and the safety of TRM-645 has been studied in some animal species. We are now examining various issues related to clinical studies, including further preclinical studies, management of manufacturing and the quality assurance for the Hb solution and liposome preparations manufactured by the GMP facility. [source]