Home About us Contact | |||
Long Peptide (long + peptide)
Selected AbstractsLong peptides induce polyfunctional T cells against conserved regions of HIV-1 with superior breadth to single-gene vaccines in macaquesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2010Maximillian Rosario Abstract A novel T-cell vaccine strategy designed to deal with the enormity of HIV-1 variation is described and tested for the first time in macaques to inform and complement approaching clinical trials. T-cell immunogen HIVconsv, which directs vaccine-induced responses to the most conserved regions of the HIV-1, proteome and thus both targets diverse clades in the population and reduces the chance of escape in infected individuals, was delivered using six different vaccine modalities: plasmid DNA (D), attenuated human (A) and chimpanzee (C) adenoviruses, modified vaccinia virus Ankara (M), synthetic long peptides, and Semliki Forest virus replicons. We confirmed that the initial DDDAM regimen, which mimics one of the clinical schedules (DDDCM), is highly immunogenic in macaques. Furthermore, adjuvanted synthetic long peptides divided into sub-pools and delivered into anatomically separate sites induced T-cell responses that were markedly broader than those elicited by traditional single-open-reading-frame genetic vaccines and increased by 30% the overall response magnitude compared with DDDAM. Thus, by improving both the HIV-1-derived immunogen and vector regimen/delivery, this approach could induce stronger, broader, and theoretically more protective T-cell responses than vaccines previously used in humans. [source] Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial,INTERNATIONAL JOURNAL OF CANCER, Issue 9 2009Ninke Leffers Abstract The prognosis of ovarian cancer, the primary cause of death from gynecological malignancies, has only modestly improved over the last decades. Immunotherapy is one of the new treatment modalities explored for this disease. To investigate safety, tolerability, immunogenicity and obtain an impression of clinical activity of a p53 synthetic long peptide (p53-SLP) vaccine, twenty patients with recurrent elevation of CA-125 were included, eighteen of whom were immunized 4 times with 10 overlapping p53-SLP in Montanide ISA51. The first 5 patients were extensively monitored for toxicity, but showed no , grade 3 toxicity, thus accrual was continued. Overall, toxicity was limited to grade 1 and 2, mostly locoregional, inflammatory reactions. IFN-, producing p53-specific T-cell responses were induced in all patients who received all 4 immunizations as measured by IFN-, ELISPOT. An IFN-, secretion assay showed that vaccine-induced p53-specific T-cells were CD4+, produced both Th1 and Th2 cytokines as analyzed by cytokine bead array. Notably, Th2 cytokines dominated the p53-specific response. P53-specific T-cells were present in a biopsy of the last immunization site of at least 9/17 (53%) patients, reflecting the migratory capacity of p53-specific T-cells. As best clinical response, stable disease evaluated by CA-125 levels and CT-scans, was observed in 2/20 (10%) patients, but no relationship was found with vaccine-induced immunity. This study shows that the p53-SLP vaccine is safe, well tolerated and induces p53-specific T-cell responses in ovarian cancer patients. Upcoming trials will focus on improving T helper-1 polarization and clinical efficacy. © 2009 UICC [source] Resin comparison and fast automated stepwise conventional synthesis of human SDF-1,JOURNAL OF PEPTIDE SCIENCE, Issue 12 2008Hirendra Patel Abstract Human SDF-1, contains 68 amino acids and is a member of the chemokine family of peptides. This long peptide was synthesized stepwise using classical conditions in 101 h. The reaction times were then reduced to deprotection times of 2 × 2 min and coupling times of 2 × 2.5 min, resulting in a total synthesis time of 22 h. The effect of different resins, resin substitutions and deprotection reagents on the crude peptide purities was compared. A small portion of crude peptide was purified using an RP-HPLC column and the mass of the final product was confirmed with MALDI-TOF mass spectrometry. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source] Long peptides induce polyfunctional T cells against conserved regions of HIV-1 with superior breadth to single-gene vaccines in macaquesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2010Maximillian Rosario Abstract A novel T-cell vaccine strategy designed to deal with the enormity of HIV-1 variation is described and tested for the first time in macaques to inform and complement approaching clinical trials. T-cell immunogen HIVconsv, which directs vaccine-induced responses to the most conserved regions of the HIV-1, proteome and thus both targets diverse clades in the population and reduces the chance of escape in infected individuals, was delivered using six different vaccine modalities: plasmid DNA (D), attenuated human (A) and chimpanzee (C) adenoviruses, modified vaccinia virus Ankara (M), synthetic long peptides, and Semliki Forest virus replicons. We confirmed that the initial DDDAM regimen, which mimics one of the clinical schedules (DDDCM), is highly immunogenic in macaques. Furthermore, adjuvanted synthetic long peptides divided into sub-pools and delivered into anatomically separate sites induced T-cell responses that were markedly broader than those elicited by traditional single-open-reading-frame genetic vaccines and increased by 30% the overall response magnitude compared with DDDAM. Thus, by improving both the HIV-1-derived immunogen and vector regimen/delivery, this approach could induce stronger, broader, and theoretically more protective T-cell responses than vaccines previously used in humans. [source] Expediting the Fmoc solid phase synthesis of long peptides through the application of dimethyloxazolidine dipeptidesJOURNAL OF PEPTIDE SCIENCE, Issue 1 2004Dr Peter White Abstract This paper describes the step-wise Fmoc solid phase synthesis of a 95-residue peptide related to FAS death domain. Attempts to prepare this peptide employing conventional amino acid building blocks failed. However, by the judicious use of dimethyloxazolidine dipeptides of serine and threonine, the peptide could be readily prepared in remarkable purity by applying single 1 h coupling reactions. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd. [source] |