Home About us Contact | |||
Loading Direction (loading + direction)
Selected AbstractsA finite element analysis of tidal deformation of the entire earth with a discontinuous outer layerGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2007H. L. Xing SUMMARY Tidal deformation of the Earth is normally calculated using the analytical solution with some simplified assumptions, such as the Earth is a perfect sphere of continuous media. This paper proposes an alternative way, in which the Earth crust is discontinuous along its boundaries, to calculate the tidal deformation using a finite element method. An in-house finite element code is firstly introduced in brief and then extended here to calculate the tidal deformation. The tidal deformation of the Earth due to the Moon was calculated for an geophysical earth model with the discontinuous outer layer and compared with the continuous case. The preliminary results indicate that the discontinuity could have different effects on the tidal deformation in the local zone around the fault, but almost no effects on both the locations far from the fault and the global deformation amplitude of the Earth. The localized deformation amplitude seems to depend much on the relative orientation between the fault strike direction and the loading direction (i.e. the location of the Moon) and the physical property of the fault. [source] A modulus-multiplier approach for non-linear analysis of laterally loaded pile groupsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2007Chia-Cheng Fan Abstract A modulus-multiplier approach, which applies a reduction factor to the modulus of single pile p,y curves to account for the group effect, is presented for analysing the response of each individual pile in a laterally loaded pile group with any geometric arrangement based on non-linear pile,soil,pile interaction. The pile,soil,pile interaction is conducted using a 3D non-linear finite element approach. The interaction effect between piles under various loading directions is investigated in this paper. Group effects can be neglected at a pile spacing of 9 times the pile diameter for piles along the direction of the lateral load and at a pile spacing of 6 times the pile diameter for piles normal to the direction of loading. The modulus multipliers for a pair of piles are developed as a function of pile spacing for departure angle of 0, 90, and 180sup>/sup> with respect to the loading direction. The procedure proposed for computing the response of any individual pile within a pile group is verified using two well-documented full-scale pile load tests. Copyright © 2006 John Wiley & Sons, Ltd. [source] Directional response of a reconstituted fine-grained soil,Part II: performance of different constitutive modelsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2006David Ma Abstract In this paper, the performance of different advanced constitutive models for soils is evaluated with respect to the experimentally observed behaviour of a soft reconstituted clay subject to a wide range of loading directions, see (presented in the companion paper). The models considered include a three-surface kinematic hardening elastoplastic model; the CLoE hypoplastic model; a recently proposed K-hypoplastic model for clays, and an enhanced version of the same model incorporating the concept of intergranular strain. A clear qualitative picture of the relative performance of the different models as a function of the loading direction is obtained by means of the incremental strain response envelopes. The definition of suitable error measures allows to obtain further quantitative information in this respect. For the particular initial conditions and loading programme considered in this study, the kinematic hardening and the enhanced K-hypoplastic models appear to provide the best performance overall. Copyright © 2006 John Wiley & Sons, Ltd. [source] On incremental non-linearity in granular media: phenomenological and multi-scale views (Part I)INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2005Félix Darve Abstract On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto-viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro-mechanical models based on multi-scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro-mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non-linear character of their behaviour. It is shown that both phenomenological and micro-mechanical models exhibit an incremental non-linearity. In addition, the multi-scale approach reveals that the macroscopic incremental non-linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright © 2005 John Wiley & Sons, Ltd. [source] Effects of Fiber Architecture on Matrix Cracking for Melt-Infiltrated SiC/SiC CompositesINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 3 2010Gregory N. Morscher The matrix cracking behavior of slurry cast melt-infiltrated SiC matrix composites consisting of Sylramic-iBN fibers with a wide variety of fiber architectures were compared. The fiber architectures included 2D woven, braided, 3D orthogonal, and angle interlock architectures. Acoustic emission was used to monitor in-plane matrix cracking during unload,reload tensile tests. Two key parameters were found to control matrix-cracking behavior: the fiber volume fraction in the loading direction and the area of the weakest portion of the structure, that is, the largest tow in the architecture perpendicular to the loading direction. Empirical models that support these results are presented and discussed. [source] Influence of Orthogonal Overload on Human Vertebral Trabecular Bone Mechanical Properties,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2007Arash Badiei Abstract The aim of this study was to investigate the effects of overload in orthogonal directions on longitudinal and transverse mechanical integrity in human vertebral trabecular bone. Results suggest that the trabecular structure has properties that act to minimize the decrease of apparent toughness transverse to the primary loading direction. Introduction: The maintenance of mechanical integrity and function of trabecular structure after overload remains largely unexplored. Whereas a number of studies have focused on addressing the question by testing the principal anatomical loading direction, the mechanical anisotropy has been overlooked. The aim of this study was to investigate the effects of overload in orthogonal directions on longitudinal and transverse mechanical integrity in human vertebral trabecular bone. Materials and Methods: T12/L1 vertebral bodies from five cases and L4/L5 vertebral bodies from seven cases were retrieved at autopsy. A cube of trabecular bone was cut from the centrum of each vertebral body and imaged by ,CT. Cubes from each T12/L1 and L4/L5 pairs were assigned to either superoinferior (SI) or anteroposterior (AP) mechanical testing groups. All samples were mechanically tested to 10% apparent strain by uniaxial compression according to their SI or AP allocation. To elucidate the extent to which overload in orthogonal directions affects the mechanical integrity of the trabecular structure, samples were retested (after initial uniaxial compression) in their orthogonal direction. After mechanical testing in each direction, apparent ultimate failure stresses (UFS), apparent elastic moduli (E), and apparent toughness moduli (u) were computed. Results: Significant differences in mechanical properties were found between SI and AP directions in both first and second overload tests. Mechanical anisotropy far exceeded differences resulting from overloading the structure in the orthogonal direction. No significant differences were found in mean UFS and mean u for the first or second overload tests. A significant decrease of 35% was identified in mean E for cubes overloaded in the SI direction and then overloaded in the AP direction. Conclusions: Observed differences in the mechanics of trabecular structure after overload suggests that the trabecular structure has properties that act to minimize loss of apparent toughness, perhaps through energy dissipating sacrificial structures transverse to the primary loading direction. [source] Deformation Mechanisms in Compression-Loaded, Stand-Alone Plasma-Sprayed Alumina CoatingsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2000Rodney W. Trice Cylindrical, stand-alone tubes of plasma-sprayed alumina were tested in compression in the axial direction at room temperature, using strain gauges to monitor axial and circumferential strains. The primary compression-loading profile used was cyclic loading, with monotonically increased peak stresses. Hysteresis was observed in the stress,strain response on unloading, beginning at a peak stress of 50 MPa. The modulus decreased as the maximum applied stress increased. The stress,strain response was only linear at low stresses; the degree of nonlinearity at high stresses scaled with the stress applied. One-hour dwells at constant stress at room temperature revealed a time-dependent strain response. Using transmission electron microscopy and acoustic emission to investigate deformation mechanisms, the stress,strain response was correlated with crack pop-in, growth, and arrest. It is proposed that the numerous defects in plasma-sprayed coatings, including porosity and microcracks, serve as sites for crack nucleation and/or propagation. As these small, nucleated cracks extend under the applied stress, they propagate nearly parallel to the loading direction along interlamellae boundaries. With increasing stress, these cracks ultimately link, resulting in catastrophic failure. [source] Anisotropic Motion of Electroactive Papers Coated with PEDOT/PSSMACROMOLECULAR MATERIALS & ENGINEERING, Issue 7 2010Jian Zhou Abstract We report on an anisotropic actuation of electroactive papers with a PEDOT/PSS coating in ambient air. PEDOT/PSS-coated papers were prepared by wetting Manila papers with a concentrated PEDOT/PSS aqueous dispersion and subsequent drying. The electroactive papers displayed a contractile stress when an external voltage was applied, the magnitude and direction of the stress depending on the relative orientation of paper fibers and the loading direction of the coating. We also demonstrated that a butterfly-like reversible bending motion of the PEDOT/PSS coated paper occurred when the voltage switching between on and off. [source] Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: tensile and impact propertiesPOLYMER INTERNATIONAL, Issue 9 2004Prof Alessandro Pegoretti Abstract E-glass and poly(vinyl alcohol) (PVA) fibres were used to produce both homogeneous and hybrid composites with an orthophthalic unsatured polyester resin. Results are presented regarding the tensile and impact behaviour of both intraply and interply hybrid composites, with particular regard to the effects of the plies stacking sequence and the loading direction. With a proper choice of composition and stacking sequence, E-glass/PVA hybrid composites were proved to achieve a property profile superior to those of homogeneous E-glass laminates in terms of specific properties. In particular, hybridization with PVA fibres resulted in improving the specific impact energy of E-glass laminates. Resistance to impact crack propagation was higher for intraply with respect to interply hybrid composites, as evidenced by their ductility index values. Copyright © 2004 Society of Chemical Industry [source] A meso-level approach to the 3D numerical analysis of cracking and fracture of concrete materialsFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 12 2006A. CABALLERO ABSTRACT A meso-mechanical model for the numerical analysis of concrete specimens in 3D has been recently proposed. In this approach, concrete is represented as a composite material with the larger aggregates embedded in a mortar-plus-aggregates matrix. Both continuum-type components are considered linear elastic, while the possibilities of failure are provided with the systematic use of zero-thickness interface elements equipped with a cohesive fracture constitutive law. These elements are inserted along all potential crack planes in the mesh a priori of the analysis. In this paper, the basic features of the model are summarized, and then results of calculations are presented, which include uniaxial tension and compression loading of 14-aggregate cubical specimen along X, Y and Z axes. The results confirm the consistency of the approach with physical phenomena and well-known features of concrete behaviour, and show low scatter when different loading directions are considered. Those cases can also be considered as different specimens subjected to the same type of loading. [source] Bifurcation modeling in geomaterials: From the second-order work criterion to spectral analysesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2009F. Prunier Abstract The present paper investigates bifurcation analysis based on the second-order work criterion, in the framework of rate-independent constitutive models and rate-independent boundary-value problems. The approach applies mainly to nonassociated materials such as soils, rocks, and concretes. The bifurcation analysis usually performed at the material point level is extended to quasi-static boundary-value problems, by considering the stiffness matrix arising from finite element discretization. Lyapunov's definition of stability (Annales de la faculté des sciences de Toulouse 1907; 9:203,274), as well as definitions of bifurcation criteria (Rice's localization criterion (Theoretical and Applied Mechanics. Fourteenth IUTAM Congress, Amsterdam, 1976; 207,220) and the plasticity limit criterion are revived in order to clarify the application field of the second-order work criterion and to contrast these criteria. The first part of this paper analyses the second-order work criterion at the material point level. The bifurcation domain is presented in the 3D stress space as well as 3D cones of unstable loading directions for an incrementally nonlinear constitutive model. The relevance of this criterion, when the nonlinear constitutive model is expressed in the classical form (d, = Md,) or in the dual form (d, = Nd,), is discussed. In the second part, the analysis is extended to the boundary-value problems in quasi-static conditions. Nonlinear finite element computations are performed and the global tangent stiffness matrix is analyzed. For several examples, the eigenvector associated with the first vanishing eigenvalue of the symmetrical part of the stiffness matrix gives an accurate estimation of the failure mode in the homogeneous and nonhomogeneous boundary-value problem. Copyright © 2008 John Wiley & Sons, Ltd. [source] Lateral force and centroid location caused by horizontal and vertical surcharge strip loads on a cross-anisotropic backfillINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2007Cheng-Der Wang Abstract This work presents analytical solutions for determining lateral force (force per unit length) and centroid location caused by horizontal and vertical surcharge surface loads acting on a cross-anisotropic backfill. The surcharge loading types are point load, line load, uniform strip load, upward linear-varying strip load, upward nonlinear-varying strip load, downward linear-varying strip load, and downward nonlinear-varying strip load. The planes of cross-anisotropy are assumed parallel to the backfill ground surface. The proposed solutions, derived by integrating the lateral stress solutions (Int. J. Numer. Anal. Meth. Geomech. 2005; 29:1341,1361), do not exist in literature. Clearly, the type and degree of material anisotropy, loading distance from the retaining wall, and loading types markedly impact the proposed solutions. Two examples are utilized to illustrate the type and degree of soil anisotropy, and the loading types on the lateral force and centroid location in the isotropic/cross-anisotropic backfills generated by the horizontal and vertical uniform, upward linear-varying and upward nonlinear-varying strip loads. The parametric study results demonstrate that the lateral force and centroid location accounting for soil anisotropy, loading distance from the retaining wall, dimension of the loading strip, and loading directions and types differ significantly from those estimated using existing isotropic solutions. The derived solutions can be added to other lateral pressures, such as earth pressure or water pressure, required for stability and structural analysis of a retaining wall. Additionally, they can simulate realistically actual surcharge loading problems in geotechnical engineering when backfill materials are cross-anisotropic. Copyright © 2007 John Wiley & Sons, Ltd. [source] A modulus-multiplier approach for non-linear analysis of laterally loaded pile groupsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2007Chia-Cheng Fan Abstract A modulus-multiplier approach, which applies a reduction factor to the modulus of single pile p,y curves to account for the group effect, is presented for analysing the response of each individual pile in a laterally loaded pile group with any geometric arrangement based on non-linear pile,soil,pile interaction. The pile,soil,pile interaction is conducted using a 3D non-linear finite element approach. The interaction effect between piles under various loading directions is investigated in this paper. Group effects can be neglected at a pile spacing of 9 times the pile diameter for piles along the direction of the lateral load and at a pile spacing of 6 times the pile diameter for piles normal to the direction of loading. The modulus multipliers for a pair of piles are developed as a function of pile spacing for departure angle of 0, 90, and 180sup>/sup> with respect to the loading direction. The procedure proposed for computing the response of any individual pile within a pile group is verified using two well-documented full-scale pile load tests. Copyright © 2006 John Wiley & Sons, Ltd. [source] Directional response of a reconstituted fine-grained soil,Part II: performance of different constitutive modelsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2006David Ma Abstract In this paper, the performance of different advanced constitutive models for soils is evaluated with respect to the experimentally observed behaviour of a soft reconstituted clay subject to a wide range of loading directions, see (presented in the companion paper). The models considered include a three-surface kinematic hardening elastoplastic model; the CLoE hypoplastic model; a recently proposed K-hypoplastic model for clays, and an enhanced version of the same model incorporating the concept of intergranular strain. A clear qualitative picture of the relative performance of the different models as a function of the loading direction is obtained by means of the incremental strain response envelopes. The definition of suitable error measures allows to obtain further quantitative information in this respect. For the particular initial conditions and loading programme considered in this study, the kinematic hardening and the enhanced K-hypoplastic models appear to provide the best performance overall. Copyright © 2006 John Wiley & Sons, Ltd. [source] Visualization of material stiffness in geomechanics analysisINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2006Donald C. Wotring Abstract This paper presents novel visualization techniques to simplify representation of the fourth-order material stiffness tensor as a set of three-dimensional geometric objects. Stiffness visualization aids in understanding the complex stiffness characteristics of highly non-linear constitutive models including modelled material anisotropy and loading path dependent stiffness variation. Stiffness visualization is relevant for understanding the relationship of material stiffness to global behaviour in the analysis of a boundary value problem. The spherical pulse stiffness visualization method, developed in the acoustics field, is extended to visualize stiffness of geomaterials using three three-dimensional objects. This method is limited to relatively simple constitutive models with symmetric stiffness matrices insensitive to loading magnitude and direction. A strain dependent stiffness visualization method is developed that allows the examination of material stiffness for a range of loading directions and is suitable for highly non-linear and path dependent material models. The proposed stiffness visualization can be represented as 3-D, 2-D and 1-D objects. The visualization technique is used to represent material stiffness and its evolution during simulated soil laboratory tests and deep excavation construction. Copyright © 2005 John Wiley & Sons, Ltd. [source] Combined Wear Behavior and Long-Term Implant-Bone Fixation of Total Knee Replacement: A Novel In Vitro Set-upARTIFICIAL ORGANS, Issue 5 2010Michele Spinelli Abstract The success of a total knee replacement (TKR) strongly depends on the prosthetic design; this includes on one hand the best choice of the bearing materials to minimize wear, on the other hand a good orientation of the prosthetic components with respect to the loading directions. The aim of this study was to investigate the feasibility of a new experimental setup combining two fundamental aspects for the long-term success of knee implants: wear and micromotions. A novel procedure was used to simulate working conditions as close as possible to in vivo ones and to measure implant-bone micromotion, by means of fixing the femoral component of the prosthesis to the distal part of a synthetic femur to be tested through a knee simulator. Gravimetric wear of the tibial specimens was assessed at regular intervals. Implant-bone inducible micromotions and permanent migrations were measured at three locations throughout the test. Wear patterns on tibial specimens were characterized through a standardized protocol based on digital image analysis; fatigue damage in the cement was quantified. Some initial conditioning was noticed both in the wear process and microcracking distribution within the cement mantle. Similarity in wear tracks observed on tibial inserts and other retrieval studies, coupled with clinically consistent migration patterns for TKR, supports the efficacy of the new in vitro method presented. [source] |