Home About us Contact | |||
Loading Cycle (loading + cycle)
Selected AbstractsOn the mechanisms of fatigue facet nucleation in titanium alloysFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 11 2008F. P. E. DUNNE ABSTRACT A crystal plasticity model for near-alpha hcp titanium alloys embodying a quasi-cleavage failure mechanism is presented and employed to investigate the conditions necessary in order for facet nucleation to occur in cold-dwell fatigue. A model polycrystal is used to investigate the effects of combinations of crystallographic orientations (and in particular, a rogue grain combination), the essential role of (cold) creep during hold periods in the loading cycle and the more damaging effect of a load hold rather than a strain hold in facet nucleation. Direct comparisons of model predictions are made with dwell fatigue test results. More generally, the crystal model for faceting is found to be consistent with a range of experimental observations. [source] A model of corrosion fatigue crack growth in ship and offshore steelsFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 8 2007M. JAKUBOWSKI ABSTRACT A model describing corrosion fatigue crack growth rate da/dN has been proposed. The crack growth rate is assumed to be proportional to current flowing through the electrolyte within the crack during a loading cycle. The Shoji formula for the crack tip strain rate has been assumed in the model. The obtained formula for the corrosion fatigue crack growth rate is formally similar to the author's empirical formulae established previously. The different effects of ,K and the fatigue loading frequency f on da/dN, in region I as compared to region II of the corrosion fatigue crack growth rate characteristics can be described by a change of one parameter only: the crack tip repassivation rate exponent. [source] Comparative study on biaxial low-cycle fatigue behaviour of three structural steelsFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 12 2006M. De FREITAS ABSTRACT In this study the uniaxial/biaxial low-cycle fatigue behaviour of three structural steels (Ck45 normalized steel, 42CrMo4 quenched and tempered steel and AISI 303 stainless steel) are studied, evaluated and compared. Two parameters are considered for estimating non-proportional fatigue lives: the coefficient of additional hardening and the factor of non-proportionality. A series of tests of uniaxial/biaxial low-cycle fatigue composed of tension/compression with cyclic torsion were carried out on a biaxial servo-hydraulic testing machine. Several loading paths were carried out, including proportional and non-proportional ones, in order to verify the additional hardening caused by different loading paths. The experiments showed that the three materials studied have very different additional hardening behaviour. Generally, the transient process from the initial loading cycle to stabilized loading cycle occurs in a few cycles. The stabilized cyclic stress/strain parameters are controlling parameters for fatigue damage. A factor of non-proportionality of the loading paths is evaluated based on the Minimum Circumscribed Ellipse approach. It is shown that the microstructure has a great influence on the additional hardening and the hardening effect is dependent on the loading path and also the intensity of the loading. [source] The evolution of the stress,strain fields near a fatigue crack tip and plasticity-induced crack closure revisitedFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 1 2004L. G. ZHAO ABSTRACT The evolution of the stress,strain fields near a stationary crack tip under cyclic loading at selected R -ratios has been studied in a detailed elastic,plastic finite element analysis. The material behaviour was described by a full constitutive model of cyclic plasticity with both kinematic and isotropic hardening variables. Whilst the stress/strain range remains mostly constant during the cyclic loading and scales with the external load range, progressive accumulation of tensile strain occurs, particularly at high R -ratios. These results may be of significance for the characterization of crack growth, particularly near the fatigue threshold. Elastic,plastic finite element simulations of advancing fatigue cracks were carried out under plane-stress, plane-strain and generalized plane-strain conditions in a compact tension specimen. Physical contact of the crack flanks was observed in plane stress but not in the plane-strain and generalized plane-strain conditions. The lack of crack closure in plane strain was found to be independent of the material studied. Significant crack closure was observed under plane-stress conditions, where a displacement method was used to obtain the actual stress intensity variation during a loading cycle in the presence of crack closure. The results reveal no direct correlation between the attenuation in the stress intensity factor range estimated by the conventional compliance method and that determined by the displacement method. This finding seems to cast some doubts on the validity of the current practice in crack-closure measurement, and indeed on the role of plasticity-induced crack closure in the reduction of the applied stress intensity factor range. [source] An algorithm for evaluating crack closure from local compliance measurementsFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 3 2002M. SKORUPA ABSTRACT A numerical procedure for evaluating fatigue crack closure from load-local deformation data is presented. The local compliance is assumed to vary during the entire loading cycle, including the portion when the crack is fully open. The closure mechanism-related characteristic load levels are identified based on comparisons between the open crack compliance variations upon loading and unloading. This type of compliance analysis is conditioned by an appropriate smoothness of the measured data. Hence, the choice and optimization of the procedure for smoothing of the measured data. Hence, the choice and optimization of the procedure for smoothing the recorded signals is thoroughly addressed in this paper. The performance of the algorithm is evaluated from comparisons between the computed closure parameters and their reference values which have been previously shown to correlate the observed crack growth rate behaviour. [source] Monopilegründungen von Offshore-Windenergieanlagen , Zum Ansatz der BettungBAUTECHNIK, Issue 1 2005Jürgen Grabe Univ.-Prof. Bei der Gründung von Offshore-Windenergieanlagen mit Monopiles stellt die große Momenten- und Horizontalkraftbelastung und deren zyklisches Auftreten eine besondere Herausforderung an die Prognose der Pfahlverformungen dar. Für ein System mit beispielhaften Abmessungen, Baugrundverhältnissen und Belastungen werden die konventionellen Verfahren zur Berechnung der horizontalen Pfahltragfähigkeit und -verformung, Bettungsmodulverfahren und API-Verfahren, mit den Ergebnissen einer 3D-FE-Analyse verglichen. Es zeigt sich, daß die konventionellen Verfahren für die Prognose der Verformungen im Gebrauchszustand, also deutlich unterhalb der Grenzlast, für dieses Beispiel unzureichend sind. Die Verteilung des Bettungsmoduls über die Tiefe wird mit keinem der Verfahren zutreffend abgebildet. Des weiteren wird die Veränderung des Bettungsmoduls über mehrere Zyklen für Schwell- und Wechselbelastungen untersucht. Vor allem bei einer Schwellast wird der auf den Ausgangszustand bezogene Bettungsmodul mit jedem Zyklus verändert. Die Verschiebung des Pfahlkopfs steigt auch nach 20 Belastungszyklen noch an. Der aus der ödometrischen Steifigkeit des Bodens abgeleitete Bettungsmodul ist zur Prognose der Pfahlverformungen insbesondere bei zyklischer Last fragwürdig. Hierfür besteht insbesondere in Anbetracht der geplanten Investitionen erheblicher Forschungsbedarf. Monopile foundations for Offshore-Wind Power Plants , approach of subgrade reaction. The large moments and horizontal forces and their cyclic occurrence represent a special challenge to the prognosis of the deformations of Monopiles as a foundation of offshore wind energy plants. The conventional procedures for the computation of the horizontal pile bearing capacity and deformation, subgrade reaction procedure and API procedure, are compared with the results of a 3D-FE analysis for a system with exemplary dimensions, soil conditions and loads. It is shown that the conventional procedures for the prognosis of the deformations in the serviceability limit state, thus clearly underneath the maximum load, for this example are insufficient. The distribution of the subgrade reaction modulus over the depth is sufficiently approximated with none of these procedures. Moreover the change of the subgrade reaction modulus is investigated for several cycles swelling and alternated loads. The modulus of subgrade reaction, referred to the initial pile position, changes especially under swelling loads for each loading cycle. The displacement of the pilehead still increases after 20 cycles. The modulus of subgrade reaction derived from the oedometric soil stiffness does not produce an accurate prognosis of the pile deformation particularly for cyclic loads. For this purpose further investigations are necessary. [source] Cleavage fracture of RPV steel following warm pre-stressing: micromechanical analysis and interpretation through a new modelFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 9-10 2006S. R. BORDET ABSTRACT In this paper, the warm pre-stress (WPS) effect on the cleavage fracture of an 18MND5 (A533B) RPV steel is investigated. This effect, which describes the effective enhancement of the cleavage fracture toughness at low temperature following a prior loading at high temperature, has received great interest in light of its significance in the integrity assessment of structures, such as nuclear pressure vessels, subjected to thermal transients. Several loading cycles between room temperature (RT) and ,150 °C are considered: Load-Unload-Cool-Fracture (LUCF), Load-Cool-Fracture (LCF) and Load-Cool with Increasing K-Fracture (LCIKF). All experiments complied with the conservative principle, which states that no fracture will occur if the applied stress intensity factor (SIF) decreases (or is held constant) while the temperature at the crack-tip decreases, even if the fracture toughness of the virgin material is exceeded. The experimental results indicate that an effective WPS effect is present even at small pre-load (Kwps= 40 MPa,m), and that a minimum critical slope (,,K/,T) in the LCIKF cycle has to be exceeded to induce cleavage fracture between RT and ,150 °C. Numerical modelling was performed using mixed isotropic and kinematic hardening laws identified on notched tensile (NT) specimens, tested in tension to large strains (up to 40%), followed by large compressive strains. Detailed microstructural investigations on compact tensile (CT) and NT fracture test specimens were performed so as to determine the nature of the cleavage initiation sites, as well as the local mechanical conditions at fracture. Based on this local information, a new cleavage model was calibrated and applied to predict the probability of cleavage fracture after WPS: it is shown that the predictions are in good agreement with the experimental results. [source] Prediction of crack opening stress levels for 1045 quenched and tempered steel under service loading spectraFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 1 2006M. KHALIL ABSTRACT The opening stresses of a crack emanating from an edge notch in a 1045 quenched and tempered steel specimen were measured under two different Society of Automotive Engineers (SAE) standard service load histories having different average mean stress levels. The two spectra are the Grapple Skidder history (GSH), which has a positive average mean stress, and the Log Skidder history (LSH), which has a zero average mean stress. To capture the behaviour of the crack opening stress in the material, the crack opening stress levels were measured at 900X using an optical video microscope, at frequent intervals for each set of histories scaled to two different maximum stress ranges. A crack growth analysis based on a fracture mechanics approach was used to model the fatigue behaviour of the steel specimens for the given load spectra and stress ranges. Crack growth analysis was based on an effective strain-based intensity factor, a crack growth rate curve obtained during closure-free loading cycles and a local notch strain calculation based on Neuber's rule. The crack opening stress (Sop) was modelled and the model was implemented in a fatigue notch model, and the fatigue lives of the specimens under the two different spectra scaled to several maximum stress levels were estimated. The average measured crack opening stresses were between 6 and 12% of the average calculated crack opening stresses. In the interest of simplifying the use of Sop in design, the average Sop was correlated with the frequency of occurrence of the cycle reducing the Sop to the average crack opening stress level. The use of an Sop level corresponding to the cycle causing a reduction in Sop to a level reached once per 10 cycles gave a conservative estimate of average crack opening stress for all the histories. [source] A numerical model for flexible pavements rut depth evolution with timeINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2007Fatima Allou Abstract A simplified method has been developed for the finite elements modelling of flexible pavements rut depth evolution with time. This method is based on the shakedown theory established by Zarka for metallic structures. The yield surface of Drucker-Prager and the plastic potential of Von Mises have been used. The simplified method determines straightforwardly the purely elastic state or the elastic shakedown state or the plastic shakedown state. The calibration of the simplified method with two unbound granular materials for roads under repeated loads triaxial tests, is explained. Then, a finite elements modelling of a flexible pavement has been carried out. Calculations of 2D and 3D have been performed and rut depth evolutions with time are shown, which underline the capabilities of the model to take into account the accumulation of plastic strains along the loading cycles. Copyright © 2006 John Wiley & Sons, Ltd. [source] |