Home About us Contact | |||
Load Resistance (load + resistance)
Selected AbstractsTrans-admittance control for eliminating the temperature effect of piezoelectric transformer in the CCFL backlight moduleINTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 8 2008Yu-Kang Lo Abstract A half-bridge (HB) resonant inverter for driving a cold cathode fluorescent lamp (CCFL) backlight module with a piezoelectric transformer (PT) is analyzed in this paper. The resonant inductance of the HB inverter is expressed as a function of the load current, the load resistance and the PT circuit parameters. Also, the trans-admittance of the PT-CCFL combination network is measured to track the operating frequency for the HB resonant inverter, which may be varied due to the temperature rise of PT. The lamp driving current and power can thus remain almost constant in a wide temperature range. Experiments show that the observed results match the theoretical analyses. Copyright © 2008 John Wiley & Sons, Ltd. [source] Investigations of the usefulness of average models for calculations characteristics of buck and boost converters at the steady stateINTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 1 2010Krzysztof Górecki Abstract This paper deals with the problem of the analysis of boost and buck converters at the steady state with the use of the method of average models. The usefulness of this method is examined by comparing the boost and buck converters characteristics at the steady-state obtained both with the transient analysis with physical models of semiconductor devices and the examined method as well. The accuracy of the method of the average models is investigated with respect to the values of the circuit load resistance, the pulse-duty factor and the frequency of the signal controlling the power switch. Copyright © 2009 John Wiley & Sons, Ltd. [source] Energy scavenging for energy efficiency in networks and applicationsBELL LABS TECHNICAL JOURNAL, Issue 2 2010Kyoung Joon Kim Telecommunication networks will play a huge part in enabling eco-sustainability of human activity; one of the first steps towards this is to dramatically increase network energy efficiency. In this paper we present two novel approaches for energy scavenging in networks. One involves thermal energy scavenging for improving wireless base station energy efficiency, and the other involves mechanical energy scavenging for powering sensors in sensor networks, for machine-to-machine (M2M) communications, and for smart grid applications. Power amplifier (PA) transistors in base stations waste 30 percent of the total energy used in a wireless access network (WAN) as heat to the environment. We propose a thermoelectric energy recovery module (TERM) to recover electricity from the waste heat of PA transistors. A fully coupled thermoelectric (TE) model, combining thermoelectricity and heat transfer physics, is developed to explore the power generation performance and efficiency as well as the thermal performance of the TERM. The TE model is comprehensively used to determine optimized pellet geometries for power generation and efficiency as a function of PA transistor heat dissipation, heat sink performance, and load resistance. Maximum power generation and efficiency for various parametric conditions are also explored. Untapped kinetic energy is almost everywhere in the form of vibrations. This energy can be converted into electrical energy by means of transducers to power wireless sensors and mobile electronics in the range of microwatts to a few milliwatts. However, many problems limit the efficiency of current harvesting generators: narrow bandwidth, low power density, micro-electro-mechanical system (MEMS) scaling, and inconsistency of vibrating sources. We explore energy scavenger designs based on multiple-mass systems to increase harvesting efficiency. A theoretical and experimental study of two degrees-of-freedom (2-DOF) vibration-powered generators is presented. Both electromagnetic and piezoelectric conversion methods are modeled by using a general approach. Experimental results for the multi-resonant system are in agreement with the analytical predictions and demonstrate significantly better performance in terms of maximum power density per total mass and a wider bandwidth compared to single DOF (1-DOF) generators. © 2010 Alcatel-Lucent. [source] Small-signal analysis of interleaved dual boost converterINTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 6 2001Mummadi Veerachary Abstract This paper presents a systematic development of steady-state, small-signal models of interleaved dual boost converter operating in a continuous current mode. These models are derived by employing the well-known signal flow graph method. This signal flow graph approach provides a means to directly translate the switching converter into its equivalent graphic model, from which a complete behaviour of the converter can easily be studied. Steady-state performance, small-signal characteristic transfer functions are derived using Mason's gain formula. The bode plots of audiosusceptibility, input impedance, output impedance, and control-to-output transfer functions are determined and illustrated using MATLAB for different values of load resistances, duty ratios. Small-signal frequency responses obtained from the signal flow graph method are validated with PSPICE simulator results. To validate the signal flow graph modelling equations, sample steady-state experimental results are provided. Copyright © 2001 John Wiley & Sons, Ltd. [source] |