Home About us Contact | |||
Liver Stem Cells (liver + stem_cell)
Selected AbstractsLiver stem cells and hepatocellular carcinoma,HEPATOLOGY, Issue 1 2009Lopa Mishra Although the existence of cancer stem cells (CSCs) was first proposed over 40 years ago, only in the past decade have these cells been identified in hematological malignancies, and more recently in solid tumors that include liver, breast, prostate, brain, and colon. Constant proliferation of stem cells is a vital component in liver tissues. In these renewing tissues, mutations will most likely result in expansion of the altered stem cells, perpetuating and increasing the chances of additional mutations and tumor progression. However, many details about hepatocellular cancer stem cells that are important for early detection remain poorly understood, including the precise cell(s) of origin, molecular genetics, and the mechanisms responsible for the highly aggressive clinical picture of hepatocellular carcinoma (HCC). Exploration of the difference between CSCs from normal stem cells is crucial not only for the understanding of tumor biology but also for the development of specific therapies that effectively target these cells in patients. These ideas have drawn attention to control of stem cell proliferation by the transforming growth factor beta (TGF-,), Notch, Wnt, and Hedgehog pathways. Recent evidence also suggests a key role for the TGF-, signaling pathway in both hepatocellular cancer suppression and endoderm formation, suggesting a dual role for this pathway in tumor suppression as well as progression of differentiation from a stem or progenitor stage. This review provides a rationale for detecting and analyzing tumor stem cells as one of the most effective ways to treat cancers such as HCC. (HEPATOLOGY 2009;49:318,329.) [source] Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized ratsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6b 2010M. B. Herrera Abstract Several studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MVs) derived from human liver stem cells (HLSC) induced in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MVs in the hepatocytes by an ,4 -integrin-dependent mechanism. However, MVs pre-treated with RNase, even if internalized, were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA-dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MVs accelerated the morphological and functional recovery of liver in a model of 70% hepatectomy in rats. This effect was associated with increase in hepatocyte proliferation and was abolished by RNase pre-treatment of MVs. Using human AGO2, as a reporter gene present in MVs, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MVs. These data suggested a translation of the MV shuttled mRNA into hepatocytes of treated rats. In conclusion, these results suggest that MVs derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets. [source] Liver cancer stem cells: implications for a new therapeutic targetLIVER INTERNATIONAL, Issue 7 2009Terence Kin Wah Lee Abstract Hepatocellular carcinoma (HCC) is an aggressive tumour with a poor prognosis. Current therapeutic strategies against this disease target mostly rapidly growing differentiated tumour cells. However, the result is often dismal due to the chemoresistant nature of this tumour type. Recent research efforts on stem cells and cancer biology have shed light on new directions for the eradication of cancer stem cells (CSCs) in HCC. The liver is a distinctive organ with the ability of tissue renewal in response to injury. Based on the hypothesis that cancer development is derived from the hierarchy of the stem cell system, we will briefly discuss the origin of liver stem cells and its relation to HCC development. We will also summarize the current CSC markers in HCC and discuss their relevance to the treatment of this deadly disease. [source] Pluripotent plasticity of stem cells and liver repopulationCELL BIOCHEMISTRY AND FUNCTION, Issue 3 2010Luisa Gennero Abstract Different types of stem cells have a role in liver regeneration or fibrous repair during and after several liver diseases. Otherwise, the origin of hepatic and/or extra-hepatic stem cells in reactive liver repopulation is under controversy. The ability of the human body to self-repair and replace the cells and tissues of some organs is often evident. It has been estimated that complete renewal of liver tissue takes place in about a year. Replacement of lost liver tissues is accomplished by proliferation of mature hepatocytes, hepatic oval stem cells differentiation, and sinusoidal cells as support. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes, and bile ductular cells. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy, and acute or chronic hepatopaties. In the future, pluripotent plasticity of stem cells will open a variety of clinical application strategies for the treatment of tissue injuries, degenerated organs. The promise of liver stem cells lie in their potential to provide a continuous and readily available source of liver cells that can be used for gene therapy, cell transplant, bio-artificial liver-assisted devices, drug toxicology testing, and use as an in vitro model to understand the developmental biology of the liver. Copyright © 2010 John Wiley & Sons, Ltd. [source] |